• Title/Summary/Keyword: jaw crusher

Search Result 14, Processing Time 0.023 seconds

Effect of Oxidation Behavior of (Nd,Dy)-Fe-B Magnet on Heavy Rare Earth Extraction Process

  • Park, Sangmin;Nam, Sun-Woo;Lee, Sang-Hoon;Song, Myung-Suk;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.91-96
    • /
    • 2021
  • Rare earth magnets with excellent magnetic properties are indispensable in the electric device, wind turbine, and e-mobility industries. The demand for the development of eco-friendly recycling techniques has increased to realize sustainable green technology, and the supply of rare earth resources, which are critical for the production of permanent magnets, are limited. Liquid metal extraction (LME), which is a type of pyrometallurgical recycling, is known to selectively extract the metal forms of rare earth elements. Although several studies have been carried out on the formation of intermetallic compounds and oxides, the effect of oxide formation on the extraction efficiency in the LME process remains unknown. In this study, microstructural and phase analyses are conducted to confirm the oxidation behavior of magnets pulverized by a jaw crusher. The LME process is performed with pulverized scrap, and extraction percentages are calculated to confirm the effect of the oxide phases on the extraction of Dy during the reaction. During the L ME process, Nd is completely extracted after 6 h, while Dy remains as Dy2Fe17 and Dy-oxide. Because the decomposition rate of Dy2Fe17 is faster than the reduction rate of Dy-oxide, the importance of controlling Dy-oxide on Dy extraction is confirmed.

Effect of the Degree of Weathering on the Distribution of Aggregate Particle Size and the Generation of Fine Rock Particles during Crushing of Granite (화강암 파쇄시 풍화정도가 골재 입도분포 및 미석분 발생에 미치는 영향)

  • You, Byoung-Woon;Lee, Jin-Young;Lee, Dong-kil;Cheong, Young-Wook
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.429-438
    • /
    • 2022
  • This study evaluated the effect of the degree of weathering on the particle size distribution and the amount of fine particles generated in the aggregate production process during the crushing of igneous rock. Rock samples were collected from three areas with differences in strength from the Schmith hammer measurement at the aggregate quarry in Geochang, Gyeongsangbuk-do. After crushing with a jaw crusher under the same conditions in laboratory, particle size analysis, mineral analysis, chemical analysis, and weathering index were calculated. The Schmidt hammer measurements were 56, 28, and <10, and the CIA and CIW values of weathering index were also different, so the rock samples were classified into hard rock, soft rock, and weathered rock according to the weathering degree. It shows a smaller particle size distribution toward weathered rocks under the microscope, and the proportion of altered clay minerals such as sericite increased. The composition of feldspar and quartz was high for hard rock, and the ratio of muscovite and kaolinite was low. As a result of the crushing of the jaw crusher, hard rock produced a lot of coarse crushed material (13.2mm), while soft rock and weathered rock produced fine crushed material (4.75mm). The former showed the characteristics of the beta distribution curve, and the latter showed the bimodal distribution curve. The production of fine rock particles (based on 0.71mm of sieve, wt. %) increased to 13%<21%<22% in hard rock, soft rock, and weathered rock, and the greater the degree of weathering, the more fine rock particles were generated. The fine particles are recovered by the operation of the sand unit in the wet aggregate production process. Therefore, in order to minimize the amount of sludge generated in the aggregate production process, it was judged that a study on the optimal operation of cyclones could be necessary.

Assessment of Application of the Recycled Aggregate Crushed in-situ for Anti-freezing Layer and Lean Concrete Base Course (현장파쇄 순환골재의 동상방지층 및 빈배합 콘크리트층에 대한 적용성 평가)

  • Kim, Jin-Cheol;Kim, Hong-Sam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.98-107
    • /
    • 2005
  • In other to recycle the waste concrete produced in stiu on the construction and management in highway, the recycled aggregates were experimentally examined in a practical application for anti-freezing layer and lean concrete base course. From the results, the mobile impact crusher and the eccentric-mounted cone and jaw were superior to the others for the graded aggregates. In the case of anti-freezing layer, the recycled one was easily controlled since the dry densities, contrary to natural one, were not largely changed with the moisture contents. It was found that the 7days compressive strengths of lean concrete were above the 10MPa regardless of the crushing types. From the result of testing the bearing capacity of anti-freezing layer, it was found that when the recycled aggregates mixed with natural sand would be within the required gradations, the layer meets the requirements of limitation and the percentage to passing 2-20mm sieve increased by 5~13% because the flimsy mortars on aggregate were re-crushed by vibrated-roller compactor. Although the compressive strength of lean concrete was 71~85% of the natural coarse aggregate, the recycled aggregates are applicable to the lean concrete because they largely exceeded the required strength, 5.8MPa.

  • PDF

Breakage and Surface Oxidation Characteristics of Waste NdFeB Magnet for Recycling (NdFeB 자석 재활용을 위한 파분쇄 및 그에 따른 표면 산화 특성 연구)

  • Kim, Kwanho;Kim, Gahee;Lee, Hoon;Kang, Jungshin
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.26-34
    • /
    • 2019
  • Due to the increasing demand of rare earth magnet for various application, it is predicted that the amount of waste rare earth magnet will increase sharply. The process of waste rare earth magnet recycling is mainly consisted of leaching and separation of rare earth element contained in the magnet. However, there is no study on the breakage characteristics of the waste rare earth magnet for production of magnet powder. Therefore, in this study, effective crushing/grinding process and breakage characteristics were investigated for waste rare earth magnet. In the case of jaw crusher, the particle size of magnet was effectively reduced without rapid oxidation. In ball mill grinding test, it was found that the grinding process was not performed properly at the early stage of grinding. Moreover, waste rare earth magnet showed very low specific rate of breakage(S) and high fraction of fine particle breakage distribution(B) compared to ordinary minerals. These results can be used as a basic data for developing crushing/grinding circuit of waste rare earth magnet.