• Title/Summary/Keyword: jasmonate

Search Result 123, Processing Time 0.024 seconds

Molecular Characterization of a thiJ-like Gene in Chinese Cabbage

  • Oh, Kyung-Jin;Park, Yong-Soon;Lee, Kyung-Ah;Chung, Yong-Je;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.343-350
    • /
    • 2004
  • A cDNA clone for a salicylic acid-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene encoding a protein of 392 amino acids contained a tandem array of two thiJ-like sequences. ThiJ is a thiamin biosynthesis enzyme that catalyzes the phosphorylation of hydroxymethylpyrimidine (HMP) to HMP monophosphate. Although the cabbage gene shows a similarity to bacterial thiJ genes, it also shares a similarity with the human DJ-1, a multifunctional protein that is involved in transcription regulation, male fertility, and parkinsonism. The cabbage thiJ-like gene is strongly induced by salicylic acid and a nonhost pathogen, Pseudomonas syringae pv. tomato, which elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with BTH, methyl jasmonate, or ethephon showed that the cabbage thiJ-like gene expression is also strongly induced by BTH, but not by methyl jasmonate or ethylene. This indicates that the cabbage gene is activated via a salicylic acid-dependent signaling pathway. Examination of the tissue-specific expression revealed that the induction of the cabbage gene expression by BTH occurs in the leaf, stem, and floral tissues but not in the root.

Establishment of Tripterygium wilfordii Hook. f. Hairy Root Culture and Optimization of Its Culture Conditions for the Production of Triptolide and Wilforine

  • Zhu, Chuanshu;Miao, Guopeng;Guo, Jia;Huo, Yanbo;Zhang, Xing;Xie, Jiahua;Feng, Juntao
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.823-834
    • /
    • 2014
  • In order to solve the shortage of natural Tripterygium wilfordii Hook. f. plant resource for the production of the important secondary metabolites triptolide and wilforine, hairy roots were induced from its root calli by Agrobacterium rhizogenes. Induced hairy roots not only could be maintained and grown well in hormone-free half-strength Murashige and Skoog medium but also could produce sufficient amounts of both triptolide and wilforine. Although hairy roots produced approximately 15% less triptolide than adventitious roots and 10% less wilforine than naturally grown roots, they could grow fast and could be a suitable system for producing both secondary metabolites compared with other tissues. Addition of $50{\mu}M$ methyl jasmonate (MeJA) could slightly affect hairy root growth, but dramatically stimulated the production of both triptolide and wilforine, whereas $50{\mu}M$ salicylic acid had no apparent effect on hairy root growth with slightly stimulatory effects on the production of both secondary metabolites. Addition of precursor nicotinic acid, isoleucine, or aspartic acid at the concentration of $500{\mu}M$ had varying effects on hairy root growth, but none of them had stimulatory effects on triptolide production, and only the former two had slightly beneficial effects on wilforine production. The majority of triptolide produced was secreted into the medium, whereas most of the produced wilforine was retained inside of hairy roots. Our studies provide a promising way to produce triptolide and wilforine in T. wilfordii hairy root cultures combined with MeJA treatment.

Regulation of the Korean Radish Cationic Peroxidase Promoter by Phytohormones and Other Reagents

  • Lee, Dong-Ju;Kim, Sung-Soo;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.51-59
    • /
    • 1999
  • The Korean radish cationic peroxidase (KRCP) promoter, comprising nucleotides -471 to +704 relative to the transcriptional initiation site, was fused to the GUS gene and transformed to tobacco BY-2 cells. We examined how auxin (2,4-dichlorophenoxyacetic acid, 2,4-D), cytokinin (6-benzylaminopurine, BAP), gibberellic acid ($GA_3$), abscisic acid (ABA), methyl jasmonate (MeJA), and phosphatidic acid (PA) affect the GUS expression in the presence or absence of 2,4-D in a modified LS medium. Exogenous 2,4-D or BAP greatly decreased the GUS expression regulated by the KRCP promoter in a modified LS medium containing 0.2 mg/l 2,4-D. $GA_3$ increased the GUS expression and ABA completely reduced the inductive effect of $GA_3$. The GUS expression was also increased dose-dependently by plant defense regulators, MeJA and PA. In contrast to the above results, auxin deprivation from the modified LS medium increased the GUS expression after treatment with exogenous 2,4-D whereas BAP still greatly decreased the GUS expression dose-dependently. $GA_3$ or MeJA slightly decreased the GUS expression. The data suggest that auxin deprivation changes the sensitivity of the suspension cells to exogenous chemicals and that the regulation of the KRCP promoter by 2,4-D, $GA_3$, and MeJA is dependent on auxin, whereas the regulation by BAP is not. This study will be valuable for understanding the function and expression mode of the Korean radish cationic peroxidase in Korean radish.

  • PDF

Molecular Cloning and Characterization of Wound-inducible Beta-amyrin Synthase from Soybean (콩으로부터 상처 유도 beta-amyrin synthase 유전자의 동정 및 발현분석)

  • Park, Seong-Whan;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2002
  • Suppression subtractive hybridization (SSH) was used to isolate wound-induced cDNAs from wounded soybean. One of wound-induced cDNA, gmwi33 showed high homology with genes encoding $\beta$-amyrin synthase. The full length cDNA of gmwi33, designated GmAMS1, is 2416 bp long and contains an open reading frame consisted of 739 amino acids. GmAMS1 protein showed 89% identity with licorice GgbAS1 and 86% identity with pea OSCPSY. In 5 day-old, dark-grown seedlings, the expression of GmAMS1 was most strongly induced by light and weakly induced by methyl jasmonate and by low temperature. However, GmAMS1 was not induced by elicitor or UV-B treatment. Such expression pattern might be closely related with the oxygen-radical scavenging activity of soyasaponin.

Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

  • Lee, Young Hee;Kim, Sang Hee;Yun, Byung-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.323-329
    • /
    • 2014
  • Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

Production of Salidroside in Rhodiloa sachalinensis A. Bor Callus by the Elicitation and Precursor (참돌꽃 (Rhodiola sachalinensis A. Bor) 캘러스에서 elicitor와 전구체에 의한 Salidroside 생산성의 변화)

  • Lee, Jae-Seung;Kim, Min-Young;Kim, Jae-Heun;Nam, Jong-Hyun;Lee, Hyeon-Young;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.268-272
    • /
    • 2008
  • The effect of elicitor and precursor on salidroside production from Rhodiola sachalinensis A.Bor callus cultures was investigated. Callus cultures were treated with yeast extract, soft-ferrite ceramics powder, methyl jasmonate, ascorbic acid, jasmonic acid and $CuCl_2$/$CdCl_2$ as an elicitor. When callus cultures were treated with $0.2g/\ell$ of yeast extract, salidroside production from callus treated with yeast extract is 3.45 times higher than that of the controlled group. Among of them, callus cultures treated with yeast extract produced the highest salidroside. Callus cultures were treated with L-phenylalanine and L-tyrosine as a precursor for 4 days. The result of salidroside content analysis showed that all feeding of precursors not affected salidroside production from callus cultures. In case of L-tyrosine fed into callus cultures, both callus growth and salidroside production decreased at all concentrations.

Enhanced Production of Oleanolic Acid by the Elicitation in Oldenlandia diffusa Suspension Cell Cultures (백화사설초의 현탁세포배양에서 Elicitation에 의한 Oleanolic acid 생산성 증대)

  • Lee Yong-Il;Kim Dong-Il
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.471-477
    • /
    • 2004
  • Oldenlandia diffusa is a Chinese medicinal herb with antitumor activity capable of suppressing the growth of some cancer cell lines. Oleanolic acid and ursolic acid are triterpenoid compounds that exist in Oldenlandia diffusa. Recently, these have been noted for anti-inflammatory, anti-cancer, and hepato-protective effects. Application of both plant growth regulators, 2,4-D and kinetin, was found to be essential for the initiation of callus and suspension cells. Leaf blades of Oldenlandia diffusa was transformed into callus on Schenk and Hildebrandt medium supplemented with 0.5 mg/L 2,4-D and 0.1 mg/L kinetin, while optimum initiation condition for suspension cells of Oldenlandia diffusa was determined to be 0.75 mg/L 2,4-D and 0.1 mg/L kinetin. Chromatographic separation of oleanolic acid from its derivatives was achieved using Rexchrom S5-100-ODS column. Analytical conditions for oleanolic acid were determined as follows: flow rate at 1.0 mL/min, UV length at 200 nm and mobile phase of $80\%$ acetonitrile and $20\%$ water. Production of secondary metabolites was found to be increased by the treatment with elicitors or signal transducers. The maximum production of oleanolic acid was 99.6 mg/L in cultures with 0.5 mM salicylic acid. It is 1.74 times higher than that of control.

조경수의 병해충-최근문제가 되는 해충들

  • Choe, Gwang-Sik
    • Landscaping Tree
    • /
    • s.102
    • /
    • pp.26-28
    • /
    • 2008
  • 최근 환경변화와 국제교류의 확대로 인하여 예전에는 문제가 되지 않았거나, 보이지 않았던 해충들이 문제해충화 되어 우리 주변에서 정원수나 조경수에 피해를 주는 해충들이 있다. 이들은 크게 3가지로 분류되는데 (1)환경의 변화에 의한 잠재해충과 문제해충화 (2) 인간의 욕심에 의해 대면적 식재로 인한 해충의 기회 확대 (3) 국제교류 확대로 인한 외래 해충의 침입 으로 나눌 수 있다. 이번 호에서는 환경변화에 의한 해충의 발생으로 환경스트레스에 의해 식물 자체 내의 방어체계가 무너지면 어떤 특정종이나 일반 해충이 대발생하는데 식물자체 환경 스트레스에 관계하는 jasmonate의 작용 저해, 식물이 자기방어를 위해 분비하는 타감물질(allelopathy)의 분비 억제, 초식성 곤충으로부터 산란억제를 위한 연모의 부족 등 해충의 대발생을 야기 시키는 경우도 있다. 또한 지구온난화로 인한 각종 해충의 대발생은 현재 전 세계적으로 문제가 되고 있다. 기온의 상승으로 곤충의 발육이 빨라져 화기 수가 증가한다거나, 포식자와 피식자의 상호작용의 연결고리가 깨어지는 등 각종 원인으로 인한 최근 발생한 해충을 기술하였다.

  • PDF