• Title/Summary/Keyword: jasmonate

Search Result 123, Processing Time 0.023 seconds

Effects of compounds related to signal transduction on anthraquinone biosynthesis in transformed cells of Rubia cordifolia var. pratensis (형질전환시킨 갈퀴꼭두서니 세포의 색소생합성에 미치는 수종의 신호전달 cascade 관련물질의 효과)

  • Lyu, Lee;Shin, Seung-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.2
    • /
    • pp.235-239
    • /
    • 2000
  • The effects of several compounds related to signal transduction cascade were determined to induce the production of alizarin and purpurin in the hairy root culture system of Rubia cordifolia var. pratensis. It was found that out of five tested compounds jasmonic acid(1 mg/l) and methyl jasmonate(1 mg/l) stimulated strongly the biosynthesis of the pigments while linolenic acid(1 mg/l) induced no significant increase of the product. Yeast extract(600 mg/l) and arachidonic acid(1 mg/l) showed relatively mild inducing effects on production of alizarin. The effects of jasmonic acid and methyl jasmonate were reduced by treatment with cycloheximide(2.8 mg/l).

  • PDF

Production of Volatile Oil Components by Cell Culture of Agastache rugosa O. Kuntze

  • Shin, Seung-Won;Kim, You-Sun;Kang, Chan-Ah
    • Natural Product Sciences
    • /
    • v.7 no.4
    • /
    • pp.120-123
    • /
    • 2001
  • To develop systems for economic production of useful essential oil compounds, callus was induced from the seedlings of Agastache rugosa and cultured on MS medium. The volatile oil fraction was extracted from the callus and investigated by mean of GC-MS. The composition of the oil was compared with that of the mother plant. As a result, sixty five compounds including ferruginol were identified in the essential oil fraction. The main component of the oil from the leaves of Agastache rugosa was methyl chavichol (53.6%). Methyl jasmonate and jasmonic acid were added to the culturing cell suspension, separately and the composition of induced oil were compared. The oils from cultured cells treated with jasmonates showed considerably different patterns. Especially, the peak of estragole was found in callus oil after treatment with methyl jasmonate as though the amount was limited to 0.58%. In general, the TIC pattern of GC-MS of the callus oil became more similar to the oil from the leaves after elicitation.

  • PDF

Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato

  • Sohn, Hwang-Bae;Lee, Han-Yong;Seo, Ju-Seok;Jung, Choon-Kyun;Jeon, Jae-Heung;Kim, Jeong-Han;Lee, Yin-Won;Lee, Jong-Seob;Cheong, Jong-Joo;Choi, Yang-Do
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2011
  • Jasmonates control diverse plant developmental processes, such as seed germination, flower, fruit and seed development, senescence and tuberization in potato. To understand the role of methyl jasmonate (MeJA) in potato tuberization, the Arabidopsis JMT gene encoding jasmonic acid carboxyl methyltransferase was constitutively overexpressed in transgenic potato plants. Increases in tuber yield and size as well as in vitro tuberization frequency were observed in transgenic plants. These were correlated with JMT mRNA level-- the higher expression level, the higher the tuber yield and size. The levels of jasmonic acid (JA), MeJA and tuberonic acid (TA) were also higher than those in control plants. Transgenic plants also exhibited higher expression of jasmonate-responsive genes such as those for allene oxide cyclase (AOC) and proteinase inhibitor II (PINII). These results indicate that JMT overexpression induces jasmonate biosynthesis genes and thus JA and TA pools in transgenic potatoes. This results in enhanced tuber yield and size in transgenic potato plants.

Characterization and Induction of Potato HMGR genes in Relation to Antimicrobial Isoprenoid Synthesis

  • Park, Doil;Richard M. Bostock
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.55-75
    • /
    • 1995
  • Induction of HMG-Co A reductase (HMGR) is essential for the biosynthesis of sesquiterpenoid phytoalexins and steroid derivatives in Solanaceous plants following wounding and pathogen infection. To better understand this complex step in stress-responsive isoprenoid synthesis, three classes of cDNAs for HMGR (hmg1, hmg2, and hmg3) were isolated from a potato tuber library. The potato cDNAs had extensive homology in open reading frames but had low homology in the 3'-untranslated regions. RNA gel blot analysis using gene-specific probes revealed that hmg1 is induced by wounding but wound induction is strongly suppressed by arachidonic acid or by inoculation with Phytophthora infestants. In contrast, hmg2 and hmg3 are slightly induced by wounding and strongly enhanced by arachidonic acid or inoculation. The induction and suppression of HMGR genes parallel the suppression of steroid and stimulation of sesquiterpenoid accumulations observed in earlier investigations. Treatment of the tuber disks with a low concentration of methyl-jasmonate doubled the wound induced accumulation of hmg1 transcripts and steroid-glycoalkaloid accumulation, but did not affect the abundance of transcripts for hmg2 or hmg3 nor induce phytoalexins. High concentration of methyl-jasmonate suppressed hmg1 mRNA and steroid-glycoalkaloid accumulation, induced hmg3 mRNA, and did not elicit phytoalexins. Lipoxygenase inhibitors suppressed the accumulation of of hmg1 transcripts and steroid-glycoalkaloids, which were restored by exogeneous methyl-jasmonate. Methyl-jasmonate applied together with arachidonic acid enhanced the elicitor induced accumulation of sesquiterpenes and sustained steroid-glycoalkaloid levels with transcript levels for the various HMGR mRNAs equal to or greater than wound-only treatment. These results domonstrate that the consequences of wound- and pathogen-responses of plants are different at the levels of gene expression and associated secondary metabolism.

  • PDF

Increasement of antioxidative activity in Codonopsis lanceolata adventitious root treated by Methyl jasmonate and salicylic acid (Methyl Jasmonate 및 Salicylic Acid 처리에 의한 더덕(Codonopsis lanceolata) 부정근의 항산화 활성 증가)

  • Hwang, Hyun-Jung;Song, Gwanpill;Kim, Mi-Hyang;Do, Seon-Gil;Bae, Kee-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.178-183
    • /
    • 2013
  • Traditionally, Codonopsis lanceolata root have been used as a source of natural heath food. This study was initiated to investigate the impacts of methyl jasmonate (MeJA) and salicylic acid (SA) on adventitious growth C. lanceolata, the production of secondary metabolites, such as flavonoids, total phenolic compound, antioxidative activity (DPPH). The highest phenolics content was observed in treatment of 20 uM MeJA (74.53 mg/g). The content of total flavonoids followed the similar pattern as that of total phenolics, showing 38.45 mg/g of C. lanceolata treated by 20 uM MeJA. The DPPH scavenging activity was 24.2 ($IC_{50}$) of C. lanceolata treated by 20 uM MeJA. These results provide useful information for enhancing biological properties of cultural roots of C. lanceolata.

Differential Induction of Protein Expression and Benzophenanthridine Alkaloid Accumulation in Eschscholtzia californica Suspension Cultures by Methyl Jasmonate and Yeast Extract

  • Cho, Hwa-Young;Rhee, Hong-Soon;H. Yoon, Sung-Yong;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2008
  • Methyl jasmonate (MJ) and yeast extract (YE) induce protein expression and benzophenanthridine alkaloid accumulation in Eschscholtzia californica suspension cell cultures. One hundred ${\mu}M$ MJ primarily induced dihydrosanguinarine $(509.0{\pm}7.4mg/l)$ ; 0.2g/l YE induced sanguinarine $(146.8{\pm}3.8mg/l)$ and an unknown compound. These results occur because dihydrobenzophenanthridine oxidase (DHBO) is induced by YE and not by MJ. YE and chitin (CHI) had similar effects on sanguinarine production and DHBO expression. Differential induction of secondary metabolites was shown in E. californica suspension cultures and the expression of proteins confirmed the metabolite results. Furthermore, treatment by various oligosaccharides helped us to understand the elicitation effect of YE in signal transduction pathways.

Methyl Jasmonate-mediated Enhancement of Phenylethanoid Glycoside in Callus from Abeliophyllum distichum (cultivar Okhwang1)

  • Tae-Won Jang;So-Yeon Han;Da-Yoon Lee;Seo-Yoon Park;Woo-Jin Oh;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.53-53
    • /
    • 2023
  • Abeliophyllum distichum, one of the Korean endemic plant, is a significant pharmaceutical plant resource. A. distichum with phenylethanoid glycoside can use to regulate the development of cancer, DNA damage with radicals, and the generation of inflammatory mediators. In this study, we investigated whether the biomass, content of phenylethanoid glycoside, and growth rate of callus derived from A. distichum (cultivar Okhwang1, CAD) change in the absence or presence of plant hormones (2,4-Dichlorophenoxyacetic acid; 2, 4-D and 1-Naphthaleneacetic acid; NAA). The results showed that the best biomass, the growth rate of callus, and the contents of phenylethanoid glycoside were cultivated on Murashige and Skoog (MS) growth medium fortified with 1 ppm 2,4-D + 2 ppm NAA after 4 weeks. In a further study, CAD was cultivated on MS growth medium fortified with an elicitor (Methyl Jasmonate, MeJA). The results showed that CAD turned to brown color and fragile form with the elicitor. HPLC-PDA analysis revealed that the contents of phenylethanoid glycoside in the elicitor-treated group were higher than in the elicitor-non-treated group. These results are consistent with the findings of Arano-Varela H et al.,'s study which is that acteoside production can increase after the treatment of MeJA. Therefore, this study can be used to develop an effective and sustainable production of useful substances as an alternative to plant cultivation.

  • PDF

Studies on the Production of (10-Deacetyl) Baccatin III in Cell Cultures of Taxus baccata Pendula (주목세포 배양에 의한 (10-Deacetyl) Baccatin III 생산 연구)

  • Yoo, Byoung-Sam;Moon, Won-Jong;Kim, Jean;Kim, Dong-Il;Byun, Sang-Yo
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.174-180
    • /
    • 1998
  • Enhanced production of (10-deacetyl) baccatin III and related taxanes was observed in suspension cultures of Taxus baccata Pendula. six % of initial glucose and sucrose concentration increased 10-deacetyl baccatin III production 3.5 and 2.5 times, respectively. Methyl jasmonate, as an elicitor, increased taxane production. Time course changes of taxane production after methyl jasmonate addition showed that baccatin II and 10-deacetyl baccatin III were detected first and paclitaxel, 10-deacetyl taxol and cephalomanine were produced in sequence. Feeding experiments with $500{\mu}M$ of benzoic acid increased 10-deacetyl baccatin III production 10 times. Baccatin III production was also increased 8 times by feeding of $500{\mu}M$ of lysine as a precursor.

  • PDF

Effect of Methyl Jasmonate on Ethylene Production in Mungbean Hypocotyls and Leaf Segments (녹두 하배축과 잎에서의 에틸렌 생성에 대한 Methyl Jasmonate의 효과)

  • 이규승
    • Journal of Plant Biology
    • /
    • v.37 no.4
    • /
    • pp.445-452
    • /
    • 1994
  • Effects of methyl jasmonate (MeJA) on ethylene production in mungbean (Phaseolus radiatus L.) hypocotyl and leaf segments were studied. Ethylene production in mungbean hypocotyl segments was decreased in proportion to MeJA concentrations and $450\;\mu\textrm{M}$ of MeJA showed 50% inhibitory effect. This inhibitory effect appeared after 3 h of incubation period and continued for 24 h. Inhibition of ethylene production by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity. However, MeJA treatment had no effect on ACC content and ACC synthase activity. MeJA also inhibited auxin-induced ethylene production in hypocotyls. To investigate the mechanisms of the inhibitory effect of MeJA on the auxin-induced ethylene production, ACC synthase and ACC oxidase activity were examined after MeJA treatment. MeJA decreased the ACC content and ACC synthase activity as weD as ACC oxidase activity in the auxin-treated tissue. These results suggest that the inhibition of MeJA on auxin-induced ethylene production is not due to the direct inhibitory effect of MeJA on the ACC synthase, but to the inhibition of the ability of IAA to promote the synthesis of ACC synthase. In contrast, ethylene production from the detached mungbean leaves was stimulated by MeJA. The rate of ethylene production increased approximately 65% over the control after 12 h of incubation period by $4.5\;\mu\textrm{M}$ MeJA. When MeJA was applied to detached leaves along with IAA, the effect of MeJA appeared to be additive. In an effort to elucidate mechanisms of MeJA action on auxin-induced ethylene production in the leaf tissue, enzyme activities of ACC synthase and ACC oxidase were examined. MeJA stimulated ACC oxidase activity but did not affect ACC synthase activity in leaf tissue. Together, these results suggest that MeJA plays different roles in the ethylene production in the different mungbean tissues.issues.

  • PDF