• Title/Summary/Keyword: iterative reweighted

Search Result 12, Processing Time 0.024 seconds

ITERATIVE REWEIGHTED ALGORITHM FOR NON-CONVEX POISSONIAN IMAGE RESTORATION MODEL

  • Jeong, Taeuk;Jung, Yoon Mo;Yun, Sangwoon
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.719-734
    • /
    • 2018
  • An image restoration problem with Poisson noise arises in many applications of medical imaging, astronomy, and microscopy. To overcome ill-posedness, Total Variation (TV) model is commonly used owing to edge preserving property. Since staircase artifacts are observed in restored smooth regions, higher-order TV regularization is introduced. However, sharpness of edges in the image is also attenuated. To compromise benefits of TV and higher-order TV, the weighted sum of the non-convex TV and non-convex higher order TV is used as a regularizer in the proposed variational model. The proposed model is non-convex and non-smooth, and so it is very challenging to solve the model. We propose an iterative reweighted algorithm with the proximal linearized alternating direction method of multipliers to solve the proposed model and study convergence properties of the algorithm.

Kernel Ridge Regression with Randomly Right Censored Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.205-211
    • /
    • 2008
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The iterative reweighted least squares(IRWLS) procedure is employed to treat censored observations. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation(GCV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

e-SVR using IRWLS Procedure

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1087-1094
    • /
    • 2005
  • e-insensitive support vector regression(e-SVR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the quadratic problem of e-SVR with a modified loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of e-SVR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for e-SVR.

  • PDF

SVC with Modified Hinge Loss Function

  • Lee, Sang-Bock
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.905-912
    • /
    • 2006
  • Support vector classification(SVC) provides more complete description of the linear and nonlinear relationships between input vectors and classifiers. In this paper we propose to solve the optimization problem of SVC with a modified hinge loss function, which enables to use an iterative reweighted least squares(IRWLS) procedure. We also introduce the approximate cross validation function to select the hyperparameters which affect the performance of SVC. Experimental results are then presented which illustrate the performance of the proposed procedure for classification.

  • PDF

Iterative Least-Squares Method for Velocity Stack Inversion - Part A: IRLS method (속도중합역산을 위한 반복적 최소자승법 - Part A: IRLS 방법)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Recently, the velocity stack domain is having an attention as a very useful domain for various processing in seismic data processing. In order to be used in many applications, the velocity stack should be obtained through an inversion method and the used inversion should have properties like the robustness to noise and the parsimony of velocity stack result. Iteratively Reweighted Least-Squares (IRLS) method is the one of the inversion methods that have such properties. This paper describes the theoretical background, implementation of the method, and examines the characteristics and limits of the IRLS method.

GACV for partially linear support vector regression

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.391-399
    • /
    • 2013
  • Partially linear regression is capable of providing more complete description of the linear and nonlinear relationships among random variables. In support vector regression (SVR) the hyper-parameters are known to affect the performance of regression. In this paper we propose an iterative reweighted least squares (IRWLS) procedure to solve the quadratic problem of partially linear support vector regression with a modified loss function, which enables us to use the generalized approximate cross validation function to select the hyper-parameters. Experimental results are then presented which illustrate the performance of the partially linear SVR using IRWLS procedure.

Sparse Kernel Regression using IRWLS Procedure

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.735-744
    • /
    • 2007
  • Support vector machine(SVM) is capable of providing a more complete description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse kernel regression(SKR) to overcome a weak point of SVM, which is, the steep growth of the number of support vectors with increasing the number of training data. The iterative reweighted least squares(IRWLS) procedure is used to solve the optimal problem of SKR with a Laplacian prior. Furthermore, the generalized cross validation(GCV) function is introduced to select the hyper-parameters which affect the performance of SKR. Experimental results are then presented which illustrate the performance of the proposed procedure.

  • PDF

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.

Sparse kernel classication using IRWLS procedure

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.749-755
    • /
    • 2009
  • Support vector classification (SVC) provides more complete description of the lin-ear and nonlinear relationships between input vectors and classifiers. In this paper. we propose the sparse kernel classifier to solve the optimization problem of classification with a modified hinge loss function and absolute loss function, which provides the efficient computation and the sparsity. We also introduce the generalized cross validation function to select the hyper-parameters which affects the classification performance of the proposed method. Experimental results are then presented which illustrate the performance of the proposed procedure for classification.

  • PDF

Robust Restoration of Barcode Signals (바코드 신호의 강인한 복원)

  • Lee, Han-A;Lee, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1859-1864
    • /
    • 2007
  • Existing barcode signal restoration algorithms are not robust to unmodeled outliers that may exist in scanned barcode images due to scratches, dirts, etc. In this paper, we describe a robust barcode signal restoration algorithm that uses the hybrid $L_1-L_2$ norm as a similarity measure. To optimze the similarity measure, we propose a modified iterative reweighted least squares algorithm based on the one step minimization of a quadratic surrogate function. In the simulations and experiments with barcode images, the proposed method showed better robustness than the conventional MSE based method. In addition, the proposed method converged quickly during optimization process.