• 제목/요약/키워드: iterative regularization

Search Result 58, Processing Time 0.023 seconds

Modified gradient methods hybridized with Tikhonov regularization for damage identification of spatial structure

  • Naseralavi, S.S.;Shojaee, S.;Ahmadi, M.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.839-864
    • /
    • 2016
  • This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference between the recorded acceleration of a real damaged structure and a hypothetical damaged one. This is performed by updating physical parameters (module of elasticity in this study) in each step using iterative process of modified nonlinear conjugate gradient (M-NCG) and modified Broyden-Fletcher-Goldfarb-Shanno algorithm (M-BFGS) separately. These algorithms are based on sensitivity analysis and provide a solution for nonlinear damage detection problem. Three illustrative test examples are considered to assess the performance of the proposed method. Finally, it is demonstrated that the proposed method is satisfactory for detecting the location and ratio of structural damage in presence of noise.

SATURATION-VALUE TOTAL VARIATION BASED COLOR IMAGE DENOISING UNDER MIXED MULTIPLICATIVE AND GAUSSIAN NOISE

  • JUNG, MIYOUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.3
    • /
    • pp.156-184
    • /
    • 2022
  • In this article, we propose a novel variational model for restoring color images corrupted by mixed multiplicative Gamma noise and additive Gaussian noise. The model involves a data-fidelity term that characterizes the mixed noise as an infimal convolution of two noise distributions and the saturation-value total variation (SVTV) regularization. The data-fidelity term facilitates suitable separation of the multiplicative Gamma and Gaussian noise components, promoting simultaneous elimination of the mixed noise. Furthermore, the SVTV regularization enables adequate denoising of homogeneous regions, while maintaining edges and details and diminishing the color artifacts induced by noise. To solve the proposed nonconvex model, we exploit an alternating minimization approach, and then the alternating direction method of multipliers is adopted for solving subproblems. This contributes to an efficient iterative algorithm. The experimental results demonstrate the superior performance of the proposed model compared to other existing or related models, with regard to visual inspection and image quality measurements.

Regularized iterative image resotoration by using method of conjugate gradient with constrain (구속 조건을 사용한 공액 경사법에 의한 정칙화 반복 복원 처리)

  • 김승묵;홍성용;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.1985-1997
    • /
    • 1997
  • This paper proposed a regularized iterative image restoration by using method of conjugate gradient. Compared with conventional iterative methods, method of conjugate gradient has a merit to converte toward a solution as a super-linear convergence speed. But because of those properties, there are several artifacts like ringing effects and the partial magnification of the noise in the course of restoring the images that are degraded by a defocusing blur and additive noise. So, we proposed the regularized method of conjugate gradient applying constraints. By applying the projectiong constraint and regularization parameter into that method, it is possible to suppress the magnification of the additive noise. As a experimental results, we showed the superior convergence ratio of the proposed mehtod compared with conventional iterative regularized methods.

  • PDF

A Steepest-Descent Image Restoration with a Regularization Parameter (정칙화 구속 변수를 사용한 Steepest-Descent 영상 복원)

  • 홍성용;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1759-1771
    • /
    • 1994
  • We proposed the iterative image restoration method based on the method of steepest descent with a regularization constraint for restoring the noisy motion-blurred images. The conventional method proposed by Jan Biemond et al, had drawback to amplify the additive noise and make ringing effects in the restored images by determining the value of regularization parameter experimentally from the degraded image to be restored without considering local information of the restored one. The method we proposed had a merit to suppress the noise amplification and restoration error by using the regularization parameter which estimate the value of it adaptively from each pixels of the image being restored in order to reduce the noise amplification and ringing effects efficiently. Also we proposed the termination rule to stop the iteration automatically when restored results approach into or diverse from the original solution in satisfaction. Through the experiments, proposed method showed better result not only in a MSE of 196 and 453 but also in the suppression of the noise amplification in the flat region compared with those proposed by Jan Biemond et al. of which MSE of 216 and 467 respectively when we used 'Lean' and 'Jaguar' images as original images.

  • PDF

High-resolution image restoration based on image fusion (영상융합 기반 고해상도 영상복원)

  • Shin Jeongho;Lee Jungsoo;Paik Joonki
    • Journal of Broadcast Engineering
    • /
    • v.10 no.2
    • /
    • pp.238-246
    • /
    • 2005
  • This paper proposes an iterative high-resolution image interpolation algorithm using spatially adaptive constraints and regularization functional. The proposed algorithm adapts adaptive constraints according to the direction of..edges in an image, and can restore high-resolution image by optimizing regularization functional at each iteration, which is suitable for edge directional regularization. The proposed algorithm outperforms the conventional adaptive interpolation methods as well as non-adaptive ones, which not only can restore high frequency components, but also effectively reduce undesirable effects such as noise. Finally, in order to evaluate the performance of the proposed algorithm, various experiments are performed so that the proposed algorithm can provide good results in the sense of subjective and objective views.

A New Inverse Scattering Scheme Using the Moment Method, II: Noise Effect (모멘트방법을 이용한 새로운 역산란 계산방법, II : 잡음의 영향)

  • 김세윤;윤태훈;라정웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.252-261
    • /
    • 1988
  • Employed the new invese scattering scheme based on the moment mehtod, which was presented in the Part I of these companion papers, numerical simulations are performed to investigate the effect of measurement errors and noise contaminating the field scattered from dielectric objects. In order to reduce those effects on the reconstructed permittivity profiles, some techniques such as regularization, iterative matrix inversion, and multiple incidence are applied to this problem.

  • PDF

ALTERNATING RESOLVENT ALGORITHMS FOR FINDING A COMMON ZERO OF TWO ACCRETIVE OPERATORS IN BANACH SPACES

  • Kim, Jong Kyu;Truong, Minh Tuyen
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1905-1926
    • /
    • 2017
  • In this paper we introduce a new iterative method by the combination of the prox-Tikhonov regularization and the alternating resolvents for finding a common zero of two accretive operators in Banach spaces. And we will give some applications and numerical examples. The results of this paper improve and extend the corresponding results announced by many others.

Restoration of Bi-level Images via Iterative Semi-blind Wiener Filtering (반복 semi-blind 위너 필터링을 이용한 이진영상의 복원)

  • Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1290-1294
    • /
    • 2008
  • We present a novel deblurring algorithm for bi-level images blurred by some parameterizable point spread function. The proposed method iteratively searches unknown parameters in the point spread function and noise-to-signal ratio by minimizing an objective function that is based on the binariness and the difference between two intensity values of restoring image. In simulations and experiments, the proposed method showed improved performance compared with the Wiener filtering based method in terms of bit error rate after segmentation.

TWO DIMENSIONAL VERSION OF LEAST SQUARES METHOD FOR DEBLURRING PROBLEMS

  • Kwon, SunJoo;Oh, SeYoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.895-903
    • /
    • 2011
  • A two dimensional version of LSQR iterative algorithm which takes advantages of working solely with the 2-dimensional arrays is developed and applied to the image deblurring problem. The efficiency of the method comparing to the Fourier-based LSQR method and the 2-D version CGLS algorithm methods proposed by Hanson ([4]) is analyzed.

Performance Comparison of Ray-Driven System Models in Model-Based Iterative Reconstruction for Transmission Computed Tomography (투과 컴퓨터 단층촬영을 위한 모델 기반 반복연산 재구성에서 투사선 구동 시스템 모델의 성능 비교)

  • Jeong, J.E.;Lee, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.142-150
    • /
    • 2014
  • The key to model-based iterative reconstruction (MBIR) algorithms for transmission computed tomography lies in the ability to accurately model the data formation process from the emitted photons produced in the transmission source to the measured photons at the detector. Therefore, accurately modeling the system matrix that accounts for the data formation process is a prerequisite for MBIR-based algorithms. In this work we compared quantitative performance of the three representative ray-driven methods for calculating the system matrix; the ray-tracing method (RTM), the distance-driven method (DDM), and the strip-area based method (SAM). We implemented the ordered-subsets separable surrogates (OS-SPS) algorithm using the three different models and performed simulation studies using a digital phantom. Our experimental results show that, in spite of the more advanced features in the SAM and DDM, the traditional RTM implemented in the OS-SPS algorithm with an edge-preserving regularizer out-performs the SAM and DDM in restoring complex edges in the underlying object. The performance of the RTM in smooth regions was also comparable to that of the SAM or DDM.