• Title/Summary/Keyword: iterative proportional fitting algorithm

Search Result 2, Processing Time 0.015 seconds

Rule-Based Classification Analysis Using Entropy Distribution (엔트로피 분포를 이용한 규칙기반 분류분석 연구)

  • Lee, Jung-Jin;Park, Hae-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.527-540
    • /
    • 2010
  • Rule-based classification analysis is widely used for massive datamining because it is easy to understand and its algorithm is uncomplicated. In this classification analysis, majority vote of rules or weighted combination of rules using their supports are frequently used in order to combine rules. We propose a method to combine rules by using the multinomial distribution in this paper. Iterative proportional fitting algorithm is used to estimate the multinomial distribution which maximizes entropy constrained on rules' support. Simulation experiments show that this method can compete with other well known classification models in the case of two similar populations.

A probabilistic information retrieval model by document ranking using term dependencies (용어간 종속성을 이용한 문서 순위 매기기에 의한 확률적 정보 검색)

  • You, Hyun-Jo;Lee, Jung-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.763-782
    • /
    • 2019
  • This paper proposes a probabilistic document ranking model incorporating term dependencies. Document ranking is a fundamental information retrieval task. The task is to sort documents in a collection according to the relevance to the user query (Qin et al., Information Retrieval Journal, 13, 346-374, 2010). A probabilistic model is a model for computing the conditional probability of the relevance of each document given query. Most of the widely used models assume the term independence because it is challenging to compute the joint probabilities of multiple terms. Words in natural language texts are obviously highly correlated. In this paper, we assume a multinomial distribution model to calculate the relevance probability of a document by considering the dependency structure of words, and propose an information retrieval model to rank a document by estimating the probability with the maximum entropy method. The results of the ranking simulation experiment in various multinomial situations show better retrieval results than a model that assumes the independence of words. The results of document ranking experiments using real-world datasets LETOR OHSUMED also show better retrieval results.