• Title/Summary/Keyword: iterative hard thresholding

Search Result 2, Processing Time 0.018 seconds

Guaranteed Sparse Recovery Using Oblique Iterative Hard Thresholding Algorithm in Compressive Sensing (Oblique Iterative Hard Thresholding 알고리즘을 이용한 압축 센싱의 보장된 Sparse 복원)

  • Nguyen, Thu L.N.;Jung, Honggyu;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.739-745
    • /
    • 2014
  • It has been shown in compressive sensing that every s-sparse $x{\in}R^N$ can be recovered from the measurement vector y=Ax or the noisy vector y=Ax+e via ${\ell}_1$-minimization as soon as the 3s-restricted isometry constant of the sensing matrix A is smaller than 1/2 or smaller than $1/\sqrt{3}$ by applying the Iterative Hard Thresholding (IHT) algorithm. However, recovery can be guaranteed by practical algorithms for some certain assumptions of acquisition schemes. One of the key assumption is that the sensing matrix must satisfy the Restricted Isometry Property (RIP), which is often violated in the setting of many practical applications. In this paper, we studied a generalization of RIP, called Restricted Biorthogonality Property (RBOP) for anisotropic cases, and the new recovery algorithms called oblique pursuits. Then, we provide an analysis on the success of sparse recovery in terms of restricted biorthogonality constant for the IHT algorithms.

Smoothed Group-Sparsity Iterative Hard Thresholding Recovery for Compressive Sensing of Color Image (컬러 영상의 압축센싱을 위한 평활 그룹-희소성 기반 반복적 경성 임계 복원)

  • Nguyen, Viet Anh;Dinh, Khanh Quoc;Van Trinh, Chien;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.173-180
    • /
    • 2014
  • Compressive sensing is a new signal acquisition paradigm that enables sparse/compressible signal to be sampled under the Nyquist-rate. To fully benefit from its much simplified acquisition process, huge efforts have been made on improving the performance of compressive sensing recovery. However, concerning color images, compressive sensing recovery lacks in addressing image characteristics like energy distribution or human visual system. In order to overcome the problem, this paper proposes a new group-sparsity hard thresholding process by preserving some RGB-grouped coefficients important in both terms of energy and perceptual sensitivity. Moreover, a smoothed group-sparsity iterative hard thresholding algorithm for compressive sensing of color images is proposed by incorporating a frame-based filter with group-sparsity hard thresholding process. In this way, our proposed method not only pursues sparsity of image in transform domain but also pursues smoothness of image in spatial domain. Experimental results show average PSNR gains up to 2.7dB over the state-of-the-art group-sparsity smoothed recovery method.