• 제목/요약/키워드: iterative equation

검색결과 328건 처리시간 0.029초

변위형 유한요소 해에서 국부응력장 향상에 대한 연구 (A study on the improvement of the local stress field in a displacement-formulated finite element solution)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.278-288
    • /
    • 1998
  • An efficient and useful method to improve the local stress field in a displacement-formulated finite element solution has been proposed using the theory of conjugate approximations for a stress field and the Loubignac's iterative method for a displacement field. Validity of the proposed method has been tested through three test examples, to improve the stress field and displacement field in the whole domain and the local regions. As a result of analysis on the test examples, it is found that the stress field in the local regions are approximated to those in the whole domain within a few iterations which have satisfied the original finite element equilibrium equation. In addition, it is found that the local stress field are by far better approximated to the exact stress field than the displacement-based stress field with the reduction of the finite-element mesh-size.

온도변화에 의한 HDD 유체 동압 베어링의 특성 해석 (Analysis of a Bydrodynamic Bearing of a BDD Spindle Motor Due to Elevated Temperature)

  • 김관수;김학운;이행수;김철순;장건희
    • 대한기계학회논문집A
    • /
    • 제29권5호
    • /
    • pp.762-769
    • /
    • 2005
  • This paper presents a method to investigate the characteristics of a hydrodynamic bearing of a HDD spindle motor due to elevated temperature considering the variation of the clearance as well as the lubricant viscosity. Iterative finite element analysis of the heat conduction and the thermal deformation is performed to determine the viscosity and clearance of a hydrodynamic bearing due to elevated temperature until the temperature of the bearing area converges. Proposed method is verified by comparing the calculated temperature with the measured one in elevated surrounding temperature as well as in room temperature. This research shows that elevated temperature changes the clearance as well as the lubricant viscosity of the hydrodynamic bearing of a HDD spindle motor. Once the viscosity and the clearance of a hydrodynamic bearing of a HDD spindle motor are determined, finite element analysis of the Reynolds equation is performed to investigate the static and dynamic characteristics of a hydrodynamic bearing of a HDB spindle motor due to elevated temperature. It also shows that the variation of clearance due to elevated temperature is another important design consideration to affect the static and dynamic characteristics of a hydrodynamic bearing of a HDD spindle motor

와도를 기저로 한 비압축성 점성유동해석 방법 (A Vorticity-Based Method for Incompressible Viscous Flow Analysis)

  • 서정천
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

구속 철근콘크리트 기둥의 극한강도와 거동해석 (Behavior and Ultimate Strength of Restrained Reinforced Concrete Columns)

  • 박재운
    • 대한토목학회논문집
    • /
    • 제12권4호
    • /
    • pp.23-31
    • /
    • 1992
  • 본 연구는 편심축하중을 받는 구속 RC 장주의 거동해석에 대한 계속연구로서, 참고문헌에서 철근콘크리트기둥의 비선형성을 고려한 이론해석방법을 도출하고, 이 이론해석방법에 의한 비선형 해석프로그램을 개발하였다. 이 프로그램을 이용하여 정해에 보다 근접한 기둥의 극한강도를 해석하였으며, 만족한 결과를 이미 얻었다. 이 논문에서는 개발한 프로그램을 이용하여 구속 철근콘크리트 기둥의 극한강도와 거동에 영향을 주는 단부회전구속, 단부구속비, 단부편심거리, 단부 편심거리비, 단부횡방향구속, 콘크리트의 압축강도, 기둥의 철근비, 철근의 항복강도 등 각종 매개변수의 특성을 심도있게 연구, 분석하였다.

  • PDF

사각형 박판의 비선형 열탄성 응력 수치해석 (Numerical Analysis of Nonlinear Thermoelastic Stress for Rectangular Thin Plate)

  • 김치경;김성중
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.155-160
    • /
    • 2004
  • 판의 두께에 선형적으로 변화하는 온도분포의 열하중을 받는 단순지지의 사각형 박판을 해석하였다. 열에 의한 판의 처짐이 판두께에 비해 상대적으로 과대하여 막응력이 부수적으로 발생하여 문제는 비선형 해석이 된다. 큰 처짐을 가지는 기하학적 비선형 문제를 지배하는 기본방정식은 von Karman 방정식이 사용되며 차분법으로 수치해석 한다. 차분화 하여 얻어지는 유사선형 대수방정식은 반복법을 도입하여 해석하고 결과치를 해석적으로 얻은 해와 비교 검토한다.

Factor of safety in limit analysis of slopes

  • Florkiewicz, Antoni;Kubzdela, Albert
    • Geomechanics and Engineering
    • /
    • 제5권5호
    • /
    • pp.485-497
    • /
    • 2013
  • The factor of safety is the most common measure of the safety margin for slopes. When the traditionally defined factor is used in kinematic approach of limit analysis, calculations can become elaborate, and iterative methods have to be used. To avoid this inconvenience, the safety factor was defined in terms of the work rates that are part of the work balance equation used in limit analysis. It was demonstrated for two simple slopes that the safety factors calculated according to the new definition fall close to those calculated using the traditional definition. Statistical analysis was carried out to find out whether, given normal distribution of the strength parameters, the distribution of the safety factor can be approximated with a well-defined probability density function. Knowing this function would make it convenient to calculate the probability of failure. The results indicated that the normal distribution could be used for low internal friction angle (up to about $16^{\circ}$) and the Johnson distribution could be used for larger angles ${\phi}$. The data limited to two simple slopes, however, does not allow assuming these distributions a priori for other slopes.

Assessment of slope stability using multiple regression analysis

  • Marrapu, Balendra M.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.237-254
    • /
    • 2017
  • Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

경계요소법(境界要素法)을 이용한 중복파(重複波)의 재현(再現) (Simulation of Standing Wave using Boundary Element Method)

  • 오영민;이길성;전인식
    • 대한토목학회논문집
    • /
    • 제14권6호
    • /
    • pp.1445-1451
    • /
    • 1994
  • 해안구조물에 작용하는 설계파압(設計波壓)을 수치적으로 계산하기 위해서는 먼저 쇄파한계(碎波限界)에 가까운 큰 중복파랑을 수치적으로 재현할 필요가 있다. 이를 위해서는 지배방정식(支配方程式)과 비선형항(非線形項)을 포함하는 경계조건을 효과적으로 반영해야 하며 특히, 자유표면(自由表面) 경계조건(境界條件)에서의 속도의 제곱항의 처리가 중요하다. 본 연구에서는 Newton 방법을 이용하여 제곱항을 충실히 반영하므로써 일반적인 셜계파 성향에 거의 상응하는 중복파랑을 재현하였으며 기존의 섭동법(攝動法) 또는 Fourier 전개 기법 및 수리실험 결과와 비교하여 그 정확도를 검토하였다.

  • PDF

Response of double hinged articulated tower platforms to wind forces

  • Islam, Nazrul;Zaheer, Mohd Moonis;Ahmed, Suhail
    • Wind and Structures
    • /
    • 제12권2호
    • /
    • pp.103-120
    • /
    • 2009
  • Articulated tower platforms due to its compliant nature are more susceptible to the dynamic effects of wind than conventional fixed platforms. Dynamic response analysis of a double hinged articulated tower excited by low frequency wind forces with random waves is presented in this paper. The exposed super structure of the platform, housing the drilling and production facilities is subjected to mean and fluctuating wind loads, while the submerged portion is acted upon by wind driven waves. The fluctuating component of the wind velocity is modeled by Emil Simiu's spectrum, while the sea state is characterized by Pierson-Moskowitz spectrum. Nonlinearities in the system due to drag force, added mass, variable submergence and instantaneous tower orientation are considered in the analysis. To account for these nonlinearities, an implicit time integration scheme (Newmark's-${\beta}$) has been employed which solves the equation of motion in an iterative fashion and response time histories are obtained. The power spectra obtained from random response time histories show the significance of low frequency responses.