• Title/Summary/Keyword: iterative correction method

Search Result 79, Processing Time 0.026 seconds

An Efficient Correction Storage Scheme for Unsteady Flows

  • Kim, Youn J.;Cheong, Jo-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.125-138
    • /
    • 2001
  • An efficient correction storage scheme on a structured grid is applied to a sequence of approximate Jacobian systems arising at each time step from a linearization of the discrete nonlenear system of equations, obtained by the implicit time discretization of the conservation laws for unsteady fluid flows. The contribution of freezing the Jacobian matrix to computing costs is investigated within the correction storage scheme. The performance of the procedure is exhibited by measuring CPU time required to obtain a fully developed laminar vortex shedding flow past a circular cylinder, and is compared with that of a collective iterative method on a single grid. In addition, some computed results of the flow are presented in terms of some functionals along with measured data. The computational test shows that the computing costs may be saved in favor of the correction storage scheme with the frozen Jacobian matrix, to a great extent.

  • PDF

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.

A Study on the New Delay Stopping Criterion of Turbo Code in W-CDMA System (W-CDMA 시스템에서 터보 부호의 새로운 복호지연 감소방식에 관한 연구)

  • Park, No-Jin;Shin, Myung-Sik
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.4
    • /
    • pp.207-215
    • /
    • 2009
  • In recent digital communication systems, the performance of Turbo Code used as the error correction coding method depends on the interleaver size influencing the free distance determination and iterative decoding algorithms of the turbo decoder. However, some iterations are needed to get a better performance, but these processes require large time delay. Recently, methods of reducing the number of iteration have been studied without degrading original performance. In this paper, the new method combining ME (Mean Estimate) stopping criterion with SDR (sign difference ratio) stopping criterion of previous stopping criteria is proposed, and the fact of compensating each method's missed detection is verified Faster decoding realizes that reducing the number of iterative decoding about 1~2 times by adopting our proposed method into serially concatenation of both decoder. System Environments were assumed DS-CDMA forward link system with intense MAI (multiple access interference).

  • PDF

Acceleration of the AFEN Method by Two-Node Nonlinear Iteration

  • Moon, Kap-Suk;Cho, Nam-Zin;Noh, Jae-Man;Hong, Ser-Gi
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.87-92
    • /
    • 1998
  • A nonlinear iterative scheme developed to reduce the computing time of the AFEN method was tested and applied to two benchmark problems. The new nonlinear method for the AFEN method is based on solving two-node problems and use of two nonlinear correction factors at every interface instead of one factor in the conventional scheme. The use of two correction factors provides higher-order accurate interface noes as well as currents which are used as the boundary conditions of the two-node problem. The numerical results show that this new method gives exactly the same solution as that of the original AEFEN method and the computing time is significantly reduced in comparison with the original AFEN method.

  • PDF

Detection and Correction of Noisy Pixels Embedded in NDVI Time Series Based on the Spatio-temporal Continuity (시공간적 연속성을 이용한 오염된 식생지수(GIMMS NDVI) 화소의 탐지 및 보정 기법 개발)

  • Park, Ju-Hee;Cho, A-Ra;Kang, Jeon-Ho;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.337-347
    • /
    • 2011
  • In this paper, we developed a detection and correction method of noisy pixels embedded in the time series of normalized difference vegetation index (NDVI) data based on the spatio-temporal continuity of vegetation conditions. For the application of the method, 25-year (1982-2006) GIMMS (Global Inventory Modeling and Mapping Study) NDVI dataset over the Korean peninsula were used. The spatial resolution and temporal frequency of this dataset are $8{\times}8km^2$ and 15-day, respectively. Also the land cover map over East Asia is used. The noisy pixels are detected by the temporal continuity check with the reference values and dynamic threshold values according to season and location. In general, the number of noisy pixels are especially larger during summer than other seasons. And the detected noisy pixels are corrected by the iterative method until the noisy pixels are completely corrected. At first, the noisy pixels are replaced by the arithmetic weighted mean of two adjacent NDVIs when the two NDVI are normal. After that the remnant noisy pixels are corrected by the weighted average of NDVI of the same land cover according to the distance. After correction, the NDVI values and their variances are increased and decreased by 5% and 50%, respectively. Comparing to the other correction method, this correction method shows a better result especially when the noisy pixels are occurred more than 2 times consistently and the temporal change rates of NDVI are very high. It means that the correction method developed in this study is superior in the reconstruction of maximum NDVI and NDVI at the starting and falling season.

Inverse Design Method of Supersonic wings Using Intergral Equations (적분방정식을 이용한 초음속 날개의 역설계법)

  • Jeong, Sin Gyu;Kim, Gyeong Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • A practical design method for supersonic wings has been developed. The method is based on Takanashi's method that uses integral equations and iterative "residual-correction" concept. The geometry correction is calculated by solving linearized small perturbation equation (LSP) with the difference between garget and objective surface pressure distributions as a boundary condition. In the present method, LSP equation is analytically transformed to integral equations by using the Green's theorem. Design results of an isolated wing and wing-nacelle configurations are presented here.

Steady Stokes flow analysis using Axial Green's Function Formulation (축그린함수법을 이용한 정상상태의 스톡스유동해석)

  • Kim, D.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.256-258
    • /
    • 2011
  • Using the axial Green's function method for Steady Stokes flows, we introduce a new pressure correction formula to satisfy the incompressibility condition, in which the pressure is related to the integral of the second order derivatives of the velocity. Based on this formula, we propose the iterative method for solving the Stokes flows in complicated domains. Even if the domain is complex, this method maintains the second order of convergence for the velocity.

  • PDF

PROJECTION ALGORITHMS WITH CORRECTION

  • Nicola, Aurelian;Popa, Constantin;Rude, Ulrich
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.697-712
    • /
    • 2011
  • We present in this paper two versions of a general correction procedure applied to a classical linear iterative method. This gives us the possibility, under certain assumptions, to obtain an extension of it to inconsistent linear least-squares problems. We prove that some well known extended projection type algorithms from image reconstruction in computerized tomography fit into one or the other of these general versions and are derived as particular cases of them. We also present some numerical experiments on two phantoms widely used in image reconstruction literature. The experiments show the importance of these extension procedures, reflected in the quality of reconstructed images.

Determining Values of Design Parameters for a Rail Transportation Terminal in a Container Port (컨테이너 항만의 철도 운송 터미널 설계변수 결정)

  • Jeong, Bong-Joo;Lee, Byung-Kwon;Kim, Kap-Hwan;Seo, Jung-Hun;Park, Soon-Oh
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.469-478
    • /
    • 2007
  • Rail transportation terminals play an important role in inland transportation systems, because the operation productivity in the terminals significantly influences the efficiency of the whole transportation systems. This paper addresses a design method of a real rail terminal that satisfies a pre-specified throughput capacity. In order to construct high performance rail terminal, it is shown how design parameters can be estimated systematically. Examples of the design parameters are the number of transshipment tracks, the number of rail cranes, and the number of internal trucks. These design parameters are estimated by using simple equations and the validity of the values of these parameters are tested by using simulation. Furthermore, some iterative correction procedure, which uses the simulation technique and the equations alternately, are proposed.