• Title/Summary/Keyword: isotropic response

Search Result 142, Processing Time 0.031 seconds

Use of infinite elements in simulating liquefaction phenomenon using coupled approach

  • Kumari, Sunita;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Soils consist of an assemblage of particles with different sizes and shapes which form a skeleton whose voids are filled with water and air. Hence, soil behaviour must be analyzed by incorporating the effects of the transient flow of the pore-fluid through the voids, and therefore requires a two-phase continuum formulation for saturated porous media. The present paper presents briefly the Biot's basic theory of dynamics of saturated porous media with u-P formulation to determine the responses of pore fluid and soil skeleton during cyclic loading. Kelvin elements are attached to transmitting boundary. The Pastor-Zienkiewicz-Chan model has been used to describe the inelastic behavior of soils under isotropic cyclic loadings. Newmark-Beta method is employed to discretize the time domain. The response of fluid-saturated porous media which are subjected to time dependent loads has been simulated numerically to predict the liquefaction potential of a semi-infinite saturated sandy layer using finite-infinite elements. A settlement of 17.1 cm is observed at top surface. It is also noticed that liquefaction occurs at shallow depth. The mathematical advantage of the coupled finite element analysis is that the excess pore pressure and displacement can be evaluated simultaneously without using any empirical relationship.

Numerical simulation of the thermoelectric behavior of CNTs/CFRP aircraft composite laminates

  • Lin, Yueguo;Lafarie-Frenot, Marie Christine;Bai, Jinbo;Gigliotti, Marco
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.633-652
    • /
    • 2018
  • The present paper focuses on the development of a model for simulating the thermoelectric behavior of CNTs/CFRP Organic Matrix Composite (OMC) laminates for aeronautical applications. The model is developed within the framework of the thermodynamics of irreversible processes and implemented into commercial ABAQUS Finite Element software and validated by comparison with experimental thermoelectric tests on two types of composites materials, namely Type A with Carbon Nanotubes (CNT) and Type B without CNT. A simplified model, neglecting heat conduction, is also developed for simplifying the identification process. The model is then applied for FEM numerical simulation of the thermoelectric response of aircraft panel structures subjected to electrical loads, in order to discuss the potential danger coming from electrical solicitations. The structural simulations are performed on quasi-isotropic stacking sequences (QI) $[45/-45/90/0]_s$ using composite materials of type A and type B and compared with those obtained on plates made of metallic material (aluminum). For both tested cases-transit of electric current of intermediate intensity (9A) and electrical loading on panels made of composite material-higher heating intensity is observed in composites materials with respect to the corresponding metallic ones.

A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium

  • Yazid, Miloud;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • This work presents the buckling investigation of embedded orthotropic nanoplates such as graphene by employing a new refined plate theory and nonlocal small-scale effects. The elastic foundation is modeled as two-parameter Pasternak foundation. The proposed two-variable refined plate theory takes account of transverse shear influences and parabolic variation of the transverse shear strains within the thickness of the plate by introducing undetermined integral terms, hence it is unnecessary to use shear correction factors. Nonlocal governing equations for the single layered graphene sheet are obtained from the principle of virtual displacements. The proposed theory is compared with other plate theories. Analytical solutions for buckling loads are obtained for single-layered graphene sheets with isotropic and orthotropic properties. The results presented in this study may provide useful guidance for design of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.

Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory

  • Abdelhak, Z.;Hadji, L.;Khelifa, Z.;Hassaine Daouadji, T.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.291-305
    • /
    • 2016
  • In this paper, a refined shear deformation plate theory which eliminates the use of a shear correction factor was presented for FG sandwich plates composed of FG face sheets and an isotropic homogeneous core. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present refined shear deformation plate theory, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern buckling behavior of FG sandwiches plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, Boundary condition, and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Numerical modelling of Haarajoki test embankment on soft clays with and without PVDs

  • Yildiz, Abdulazim;Uysal, Firdevs
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.707-726
    • /
    • 2015
  • This paper investigates the time dependent behaviour of Haarajoki test embankment on soft structured clay deposit. Half of the embankment is constructed on an area improved with prefabricated vertical drains, while the other half is constructed on the natural deposit without any ground improvement. To analyse the PVD-improved subsoil, axisymmetric vertical drains were converted into equivalent plane strain conditions using three different approaches. The construction and consolidation of the embankment are analysed with the finite element method using a recently developed anisotropic model for time-dependent behaviour of soft clays. The constitutive model, namely ACM-S accounts for combined effects of plastic anisotropy, interparticle bonding and degradation of bonds and creep. For comparison, the problem is also analysed with isotropic Soft Soil Creep and Modified Cam Clay models. The results of the numerical analyses are compared with the field measurements. The results show that neglecting effects of anisotropy, destructuration and creep may lead to inaccurate predictions of soft clay response. Additionally, the numerical results show that the matching methods accurately predict the consolidation behaviour of the embankment on PVD improved soft clays and provide a useful tool for engineering practice.

Directional ARMAX Model-Based Approach for Rotordynamics Identification, Part 2 : Performance Evaluations and Applications (방향 시계열에 의한 회전체 동특성 규명 : (II) 성능 평가 및 응용)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.60-69
    • /
    • 1999
  • In the first paper of this research$^{(1)}$. a new time series method. directional ARMAX (dARMAX) model-based approach. was proposed for rotordynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible. to account for the dynamic characteristics inherent in rotating machinery. In this second part. an evaluation of its performance characteristics based on both simulated and experimental data is presented. Numerical simulations are carried out to show that the method. a complex time series method. successfully implements the complex modal testing in the time domain. and it is superior in nature to the conventional ARMAX and the frequency-domain methods in the estimation of the modal parameters for isotropic and weakly anisotropic rotor systems. Experiments are carried out to demonstrate the applicability and the effectiveness of the dARMAX model-based approach, following the proposed fitting strategy. for the rotordynamics identification.

  • PDF

A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation

  • Abazid, Mohammad Alakel;Alotebi, Muneerah S.;Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.219-232
    • /
    • 2018
  • This paper deals with the static bending of various types of FGM sandwich plates resting on two-parameter elastic foundations in hygrothermal environment. The elastic foundation is modeled as Pasternak's type, which can be either isotropic or orthotropic and as a special case, it converges to Winkler's foundation if the shear layer is neglected. The present FGM sandwich plate is assumed to be made of a fully ceramic core layer sandwiched by metal/ceramic FGM coats. The governing equations are derived from principle of virtual displacements based on a shear and normal deformations plate theory. The present theory takes into account both shear and normal strains effects, thus it predicts results more accurate than the shear deformation plate theories. The results obtained by the shear and normal deformation theory are compared with those available in the literature and also with those obtained by other shear deformation theories. It is concluded that the present results are slightly deviated from other results because the normal deformation effect is taken into account. Numerical results are presented to show the effects of the different parameters, such as side-to-thickness ratio, foundation parameters, aspect ratio, temperature, moisture, power law index and core thickness on the stresses and displacements of the FG sandwich plates.

Mechanistic Analysis of Geogrid Base Reinforcement in Flexible Pavements Considering Unbound Aggregate Quality

  • Kwon Jay-Hyun;Tutumluer Erol;Kim Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.37-47
    • /
    • 2006
  • The structural response and performance of a flexible pavement can be improved through the use of geogrids as base course reinforcement. Current ongoing research at the University of illinois has focused on the development of a geogrid base reinforcement mechanistic model for the analysis of reinforced pavements. This model is based on the finite element methodology and considers not only the nonlinear stress-dependent pavement foundation but also the isotropic and anisotropic behavior of base/subbase aggregates for predicting pavement critical responses. An axisymmetric finite element model was developed to employ a three-noded axisymmetric membrane element for modeling geogrid reinforcement. The soil/aggregate-geogrid interface was modeled by the three-noded membrane element and the neighboring six-noded no thickness interface elements. To validate the developed mechanistic model, the commercial finite element program $ABAQUS^{TM}$ was used to generate pavement responses as analysis results for simple cases with similar linear elastic material input properties. More sophisticated cases were then analyzed using the mechanistic model considering the nonlinear and anisotropic modulus property inputs in the base/subbase granular layers. This paper will describe the details of the developed mechanistic model and the effectiveness of geogrid reinforcement when used in different quality unbound aggregate base/subbase layers.

  • PDF

Hygrothermal Fracture Analysis in Dissimilar Materials

  • Ahn, Kook-Chan;Lee, Tae-Hwan;Bae, Kang-Yul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.65-72
    • /
    • 2001
  • This paper demonstrates an explicit-implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for an existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory. Darcy's law is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full Newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.