• 제목/요약/키워드: isotropic point

검색결과 116건 처리시간 0.02초

라미네이트 복합재 판의 저속 충격 손상 모델링 (Modeling of Low Velocity Impact Damage in Laminated Composites)

  • 공창덕;이정환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.240-244
    • /
    • 2005
  • In this study a simple model is developed that predicts impact damage in a composite laminate using an analytical model. The model uses a non-linear approximation method (Rayleigh-Ritz) and the large deflection plate theory to predict the number of failed plies and damage area in a quasi-isotropic composite circular plate (axisymmetric problem) due to a point impact load at its centre. It is assumed that the deformation due to a static transverse load is similar to that occurred in a low velocity impact. It is found that the model, despite its simplicity, is in good agreement with FEM predictions and experimental data for the deflection of the composite plate and gives a good estimate of the number of failed plies due to fibre breakage. The predicted damage zone could be used with a fracture mechanics model developed by the second investigator and co-workers to calculate the compression after impact strength of such laminates. This approach could save significant running time when compared to FEM solutions.

  • PDF

충격손상을 받은 섬유 금속 적층판의 잔류 강도 연구 (Residual Strength of Fiber Metal Laminates After Impact)

  • 남현욱;이용태;정창규;한경섭
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.440-449
    • /
    • 2003
  • Residual strength of fiber metal laminates after impact was studied. 3/4 lay up FML was fabricated using 4 ply prepreg, 2 ply aluminum sheets, and 1 ply steel sheet. Quasi isotropic ([0/45/90/-45]s) and orthotropic ([0/90/0/90]s) FRP were also fabricated to compare with FML. Impact test were conducted by using instrumented drop weight impact machine (Dynatup, Model 8250). Penetration load and absorbed energy of FML were superior to those of FRPs. Tensile tests were conducted to evaluate the residual strength after impact. Strength degradation of FML was less than that of FRP. This means that the damage tolerance of FML is excellent than that of FRP. Residual strength of each specimen was predicted by using Whitney and Nuismer(WN) Model. Impact damage area is assumed as a circular notch in WN model. Damage width is defined as the average of back face and top face damage width of each specimen. Average stress and point stress criterions were used to calculate the characteristic length. It is supposing that a characteristic length is a constant. The distribution of characteristic length shows that the assumption is reasonable. Prediction was well matched with experiment under both stress criterions.

Modelling of Low Velocity Impact Damage In Laminated Composites

  • Lee Jounghwan;Kong Changduk;Soutis Costas
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.947-957
    • /
    • 2005
  • In this study a simple model is developed that predicts impact damage in a composite laminate avoiding the need of the time-consuming dynamic finite element method (FEM). The analytical model uses a non-linear approximation method (Rayleigh-Ritz) and the large deflection plate theory to predict the number of failed plies and damage area in a quasi-isotropic composite circular plate (axisymmetric problem) due to a point impact load at its centre. It is assumed that the deformation due to a static transverse load is similar to that oc curred in a low velocity impact. It is found that the model, despite its simplicity, is in good agreement with FEM predictions and experimental data for the deflection of the composite plate and gives a good estimate of the number of failed plies due to fibre breakage. The predicted damage zone could be used with a fracture mechanics model developed by the second investigator and co-workers to calculate the compression after impact strength of such laminates. This approach could save significant running time when compared to FEM solutions.

($^{11}$B NMR study of vortex dynamics in LuNi$_2$B$_2$C

  • Lee, K.H.;Seo, S.W.;Kim, D.H.;Khang, K.H.;Seo, H.S.;Hwang, C.S.;Cho, B.K.;Lee, Moo-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.107-110
    • /
    • 2000
  • ($^{11}$B NMR measurements have been performed on single crystals of LuNi$_2$B$_2$C superconductor to investigate vortex lattice structures and dynamical behavior. The spectrum in the superconducting state is significantly broadened by local field inhomogeneity due to the vortex lattice and the peak point of the spectrum shifts toward low magnetic field due to the imperfect field penetration. The linewidth of the spectrum reflecting local field variation is much smaller than expected for conventional vortex lattices and shows peculiar increase at low temperature. Furthermore, the transverse relaxation rate, 1/T$_2$, probing the slow motion of vortices, exhibits a single peak as temperature decreases. These prominent results highlight significant fluctuation of vortices even for this low T$_c$, and nearly isotropic 3D superconductor.

  • PDF

A Metallurgical Study on Sputtered thin Film Magnet of high $_{i}\textrm{H}_{c}$ Nd-(Fe, Co)-B alloy and Magnetic

  • Kang, Ki-Won;Kim, Jin-Ku;Song, Jin-Tae
    • 한국재료학회지
    • /
    • 제4권5호
    • /
    • pp.535-540
    • /
    • 1994
  • Thin film magnet was fabricated by radio frequency magnetron sputtering using $Nd_13/(Fe.Co)_{70}B_{17}$ alloy target and magnetic properties were investigated according to sputtering conditions from the metallurgical point of view. we could obtain the best preferred orientation of $Nd_2Fe_{14}B$ phase at substrate temperatures between $450^{\circ}C$ and $460^{\circ}C$ with the input power 150W, and thin films had the anisotropic magnetic properties. But, as the thickness of thin film increased, the c-axis orientation gradually tended to be disordered and magnetic properties also become isotropic. Just like Nd-Fe-B meltspun ribbon, the microstructure of thin film magnet was consisted of very find cell shaped $Nd_2Fe_{14}B$ phase and the second phase along grain boundary. While, domain structure showed maze patterns whose magnetic easy axis was was perpendicular to film plane of thin film. It was concluded from these results that the perpendicualr anisotropy in magnetization was attributed to the perpendicular alignment of very find $Nd_2Fe_{14}B$ grains in thin film.

  • PDF

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제2권1호
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

Activated Carbon Fibers from Chemically Modified Coal Tar Pitches

  • Ryu, S.K.;Shim, J.W.;Yang, K.S.;Mochida, I.
    • Carbon letters
    • /
    • 제1권1호
    • /
    • pp.6-11
    • /
    • 2000
  • Coal tar pitch was chemically modified with 10 wt% benzoquinone (BQ) to raise the softening point of isotropic pitch precursor and the precursor was melt-spun into pitch fibers, stabilized, carbonized and activated with steam at $900^{\circ}C$. The weight loss of carbon fiber-benzoquinone (CF-BQ) increased with the increase of activation time like other fibers, but was lower than those of Kureha fiber at the same activation time in spite of larger geometric surface area. Those adsorption isotherms fitted into 'Type I' according to Brunauer, Deming, Deming and Teller classification. However, there was very thin low-pressure hysteresis that lower closure points of the hysteresis are about 0.42-0.45. From the pore size distribution curves, there might be some micropores having narrow-necked bottle; a series of interconnected pore is more likely than discrete bottles. FT-IR studies showed that the functional groups such as carboxyl, quinone, and phenol were introduced to ACFs-BQ surface after steam activation. Methylene blue decolorization and iodine adsorption capacity of ACF-BQ increased linearly with the increase of specific surface area and was larger than that of ACF-Kureha at the same specific surface area.

  • PDF

A topology optimization method of multiple load cases and constraints based on element independent nodal density

  • Yi, Jijun;Rong, Jianhua;Zeng, Tao;Huang, X.
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.759-777
    • /
    • 2013
  • In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated ad minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used a the design variable. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such ad the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

2D 변형률 파손 이론을 이용한 복합재료의 굽힘 거동 해석 (A Study on Bending Behaviors of Laminated Composites using 2D Strain-based Failure Theory)

  • 김진성;노진호;이수용
    • 항공우주시스템공학회지
    • /
    • 제11권5호
    • /
    • pp.13-19
    • /
    • 2017
  • 본 연구에서는 굽힘 하중을 받는 복합재료 적층판의 파손 해석을 위하여 2D 변형률 기반 파손 이론을 적용하였다. 복합재료 적층판의 비선형 기계적 거동을 모사하기 위하여, 선형 증분 접근 방식을 적용하고 단위 길이 적층판에 대한 점진적 파손 해석을 수행하였다. 크로스플라이 및 준등방성 적층 패턴에 대하여 3점 굽힘 시험을 수행하고 해석 결과와 비교 검증하였다.

몬테칼로 방법을 이용한 원통형 관통부의 감마선 스트리밍 커널의 산출 (Generation of Gamma-Ray Streaming Kernels Through Cylindrical Ducts Via Monte Carlo Method)

  • Kim, Dong-Su;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.80-90
    • /
    • 1993
  • 원자력발전소에는 방사선 차폐체를 통한 수 많은 관통부들이 존재하며. 이를 통한 방사선 스트리밍의 해석은 발전소 작업자들의 방호를 위한 차폐 설계에 있어 중요한 고려사항 중 하나이다. 본 연구에서는 관통부 중 주종을 이루는 콘크리트 벽체 내 원통형 직관통부로 단방향. 단일 에너지의 감마선 면선원에 의한 방사선 스트리밍 해석을 위하여 몬테칼로방법에 따른 전산 프로그램을 개발하였으며, 이를 사용하여 여러 경우의 감마선원 에너지와 입사각. 관통부의 반경과 길이에 대하여 관통부 출구에서의 평균 선량을 계산하여 그 결과를 라이브러리화 하였다 또한. 이를 이용하여 등방향 점선원에 대하여 적절히 근사할 수 있음을 보임으로서 임의의 감마선원 분포에 대하여 짧은 전산시 간으로 정확한 결과를 구할 수 있는 방법을 제공하였다.

  • PDF