• Title/Summary/Keyword: isotropic point

Search Result 114, Processing Time 0.023 seconds

A Study on the Optimal Position Determination of Point Supports to Maximize Fundamental Natural Frequency of Plate (평판의 1차 고유진동수가 최대가 되는 점지지의 최적위치선정에 관한 연구)

  • Hong Do-Kwan;Kim Moon-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1165-1171
    • /
    • 2004
  • The free vibration analyses of the isotropic and CFRP laminated composite rectangular plates with point supports at the fix edge is performed by FEM. We showed optimal position and mode shape of point supports that maximized fundamental natural frequency of the isotropic and CFRP laminated composite rectangular plates by each aspect ratio and the number of point supports.

Closed-form Green's functions for transversely isotropic bi-solids with a slipping interface

  • Yue, Zhong Qi
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.469-484
    • /
    • 1996
  • Green's functions are obtained in exact closed-forms for the elastic fields in bi-material elastic solids with slipping interface and differing transversely isotropic properties induced by concentrated point and ring force vectors. For the concentrated point force vector, the Green functions are expressed in terms of elementary harmonic functions. For the concentrated ring force vector, the Green functions are expressed in terms of the complete elliptic integral. Numerical results are presented to illustrate the effect of anisotropic bi-material properties on the transmission of normal contact stress and the discontinuity of lateral displacements at the slipping interface. The closed-form Green's functions are systematically presented in matrix forms which can be easily implemented in numerical schemes such as boundary element methods to solve elastic problems in computational mechanics.

The Improvement of Biaxial Flexure Test (BFT) Method for Determination of the Biaxial Flexure Tensile Strength of Concrete (콘크리트 이방향 휨인장강도 결정을 위한 이방향 휨인장강도 시험법 개선)

  • Kim, Jihwan;Zi, Goangseup;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.389-397
    • /
    • 2011
  • In this study, an experiment for the biaxial behavior of specimens was carried out to identify whether the isotropic flexure tensile stress of concrete in the BFT method is feasible. Another experiment for the improvement of the BFT method was conducted to ensure the isotropic flexure tensile stress of BFT specimens during the test. In addition, the biaxial flexure strength of concrete given by the improved BFT method was compared to the uniaxial flexure strength by the four-point bending test. Test results show that the isotropic flexure tensile stress of concrete using the BFT method was highly influenced by the surface conditions and warping of the specimens. Using improved BFT method, we could obtained the isotropic flexure tensile stress of concretes. The biaxial flexure strength of BFT was about 32% greater than the uniaxial flexure strength of the four-point bending test. In the experiment, with the smaller scatter, the improved BFT method gave a reliable biaxial flexure strength like the four-point bending test.

Yielding Curve of Isotropic and Anisotropic Consolidated Compacted Weathered Granite Soil (등방 및 비등방 압밀된 다짐풍화화강토의 항복곡선)

  • 정진섭;양재혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.103-115
    • /
    • 2002
  • During this study, various stress path tests in previous isotropic and anisotropic (compression and tension) stress histories are performed on weathered granite soil sampled at Iksan, Jeonbuk. Yielding points are determined from various stress-strain curves(stress ratio-shear strain, volumetric strain, normalized energy and dissipated total energy curves). The shape and characteristics of isotropic and anisotropic yielding curves are examined. The main results are summarized as follows . 1) Yielding curries defined from stress ratio - normarized energy and dissipated total energy curves show almost perfect ellipse. 2) Directions of plastic strain incremental vector are not perpendicular to yielding curve. 3) Normarized energy and dissipated total energy spread with similar tendency with respect to yielding currie in stress space.

Evaluation of Stiffness Matrix of 3-Dimensional Elements for Isotropic and Composite Plates (등방성 및 복합재 플레이트용 16절점 요소의 강성행렬 계산)

  • 윤태혁;김정운;이재복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2640-2652
    • /
    • 1994
  • The stiffness of 6-node isotropic element is stiffer than that of 8-node isotropic element of same configuration. This phenomenon was called 'Relative Stiffness Stiffening Phenomenon'. In this paper, an equation of sampling point modification which correct this phenomenon was derived for the composite plate, as well as an equation for an isotropic plate. The relative stiffness stiffening phenomena of an isotropic plate element could be corrected by modifying Gauss sampling points in the numerical integration of stiffness matrix. This technique could also be successfully applied to the static analyses of composite plate modeled by the 3-dimensional 16-node elements. We predicted theoretical errors of stiffness versus the number of layers that result from the reduction of numerical integration order. These errors coincide very well with the actual errors of stiffness. Therefore, we can choose full integration of reduced integration based upon the permissible error criterion and the number of layers by using the thoretically predicted error.

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces

  • Ahn, Namshik;Lee, Kangsu
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.501-515
    • /
    • 2011
  • Sandwich elements have high flexural rigidity and high strength per density. They also have excellent anti-vibration and anti-noise characteristics. Therefore, they are used for structures of airplanes and high speed ships that must be light, as well as strong. In this paper, the Reissner-Mindlin's plate theory is studied from a Hamilton's principle point of view. This theory is modified to include the influence of shear deformation and rotary inertia, and the equation of motion is derived using energy relationships. The theory is applied to a rectangular sandwich model which has isotropic, asymmetrical faces and an isotropic core. Investigations are conducted for five different plate thicknesses. These plates are identical to the sandwich plates currently used in various structural elements of surface effect ships (SES). The boundary conditions are set to simple supports and fixed supports. The elastic and shear moduli are obtained from the four-point bending tests on the sandwich beams.

Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.521-538
    • /
    • 2020
  • The present study is concerned with the thermoelastic interactions in a two dimensional homogeneous, transversely isotropic thermoelastic solid with new modified couple stress theory without energy dissipation and with two temperatures in frequency domain. The time harmonic sources and Hankel transform technique have been employed to find the general solution to the field equations.Concentrated normal force, normal force over the circular region, thermal point source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. Numerically simulated results are depicted graphically to show the effect of angular frequency on the resulted quantities.

Preparation and characterization of isotropic pitch-based carbon fiber

  • Zhu, Jiadeng;Park, Sang Wook;Joh, Han-Ik;Kim, Hwan Chul;Lee, Sungho
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.94-98
    • /
    • 2013
  • Isotropic pitch fibers were stabilized and carbonized for preparing carbon fibers. To optimize the duration and temperature during the stabilization process, a thermogravimetric analysis was conducted. Stabilized fibers were carbonized at 1000, 1500, and $2000^{\circ}C$ in a furnace under a nitrogen atmosphere. An elemental analysis confirmed that the carbon content increased with an increase in the carbonization temperature. Although short graphitic-like layers were observed with carbon fibers heat-treated at 1500 and $2000^{\circ}C$, Raman spectroscopy and X-ray diffraction revealed no significant effect of the carbonization temperature on the crystalline structure of the carbon fibers, indicating the limit of developing an ordered structure of isotropic pitch-based carbon fibers. The electrical conductivity of the carbonized fiber reached $3.9{\times}10^4$ S/m with the carbonization temperature increasing to $2000^{\circ}C$ using a four-point method.

Temperature and thermal stress distributions in a hollow circular cylinder composed of anisotropic and isotropic materials

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Sadeghzadeh-Attar, Abbas
    • Advances in materials Research
    • /
    • v.9 no.1
    • /
    • pp.15-32
    • /
    • 2020
  • In this article, an analytical solution is presented for the steady-state axisymmetric thermal stress distributions in a composite hollow cylinder. The cylinder is composed of two isotropic and anisotropic materials which is subjected to the thermal boundary conditions of convective as well as radiative heating and cooling on the inner and outer surfaces, respectively. The solution of the temperature is obtained by means of Bessel functions and the thermal stresses are developed using Potential functions of displacement. Numerical results are derived for a cylinder which is similar to a gas turbine combustor and showed that the maximum temperature and thermal stresses (radial, hoop, axial) occurred in the middle point of cylinder and the values of thermal stresses in anisotropic cylinder are more than the isotropic cylinder. It is worthy to note that the values of the thermal conditions which estimated in this research, not to be presented in any other papers but these values are very accurate in calculation.