• Title/Summary/Keyword: isotope measurement

Search Result 131, Processing Time 0.025 seconds

Investigation of Cryogenic Breakthrough Curve Measurement System at 77 K for Hydrogen Isotopologue Separation (수소 동위원소 분리를 위한 77 K 극저온 파과 곡선 측정 시스템 제작)

  • Kim, Suhwan;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.36-43
    • /
    • 2022
  • Breakthrough analysis has widely been explored for the dynamic separation of gaseous mixtures in porous materials. In general, breakthrough experiments measure the components of a flowing gas when a gaseous mixture is injected into a column filled with an adsorbent material. In this paper, we report on the design and fabrication of a breakthrough curve measurement device to study the dynamic adsorptive separation of hydrogen isotopologues in porous materials. Using the designed system, an experiment was conducted involving a 1:1 mixture of hydrogen and deuterium passed through a column filled with zeolite 13X (1 g). At room temperature, both hydrogen and deuterium were adsorbed in negligible amounts; however, at a temperature of 77 K, deuterium was preferentially adsorbed over hydrogen. The selectivity was different from that in the existing literature due to the different sample shapes, measurement methods, and column structures, but was at a similar level to that of cryogenic distillation (1.5).

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.

Isotopic Analysis of NUSIMEP-6 Uranium Particles using SEM-TIMS

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.51-54
    • /
    • 2013
  • Isotopic analysis using thermal ionization mass spectrometry coupled with scanning electron microscopy (SEM-TIMS) was performed to determine the isotopic ratios of uranium contained in micro-particles in the 6th Nuclear Signatures Interlaboratory Measurement Evaluation Programme (NUSIMEP-6) sample. Elemental analysis by energy dispersive X-ray spectroscopy (EDS) was conducted on uranium-bearing mirco-particles, which were transferred to rhenium filaments for TIMS loading using a micromanipulation system in a SEM. A multi-ion-counter system was utilized to detect the ion signals of the four isotopes of uranium simultaneously. The isotope ratios of uranium corrected by bracketing using a reference material showed excellent agreement with the certified values. The measurement accuracy for $n(^{234}U)/n(^{238}U)$ and (b) $n(^{235}U)/n(^{238}U)$ was 10% and 1%, respectively, which met the requirements for qalification for the NetWork of Analytical Laboratories (NWAL).

Development of a Mushroom Powder Certified Reference Material for Element Analysis

  • Betru, Tegegn Gizachew;Yim, Yong-Hyeon;Lee, Kyoung-Seok
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.108-112
    • /
    • 2020
  • A certified reference material (CRM) for the analysis of nutrient elements in an edible mushroom (Ganoderma lyceum) powder has been developed (KRISS CRM 108-10-011). The mass fractions of calcium (Ca), iron (Fe), and zinc (Zn) were measured by isotope dilution inductively coupled plasma mass spectrometry (ID ICP/MS). To dissolve the fungi cell wall of mushroom consisted of chitin fibers, sample preparation method by single reaction chamber type microwave-assisted acid digestion with acid mixtures was optimized. The mean measurement results obtained from 12 sample bottles were used to assign as the certified values for the CRM and the between-bottle homogeneities were evaluated from the relative standard deviations. The certified values were metrologically traceable to the definition of the kilogram in the International System of Units (SI). This CRM is expected to be used for validation of analytical methods or quality control of measurement results in analytical laboratories when they determine the mass fractions of elements in mushroom or other similar samples.

Preparation of Pure CO2 Standard Gas from Calcium Carbonate for Stable Isotope Analysis (탄산칼슘을 이용한 이산화탄소 안정동위원소 표준시료 제작에 대한 연구)

  • Park, Mi-Kyung;Park, Sunyoung;Kang, Dong-Jin;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Jooil;Kim, Kyung-Ryul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • The isotope ratios of $^{13}C/^{12}C$ and $^{18}O/^{16}O$ for a sample in a mass spectrometer are measured relative to those of a pure $CO_2$ reference gas (i.e., laboratory working standard). Thus, the calibration of a laboratory working standard gas to the international isotope scales (Pee Dee Belemnite (PDB) for ${\delta}^{13}C$ and Vienna Standard Mean Ocean Water (V-SMOW) for ${\delta}^{18}O$) is essential for comparisons between data sets obtained by other groups on other mass spectrometers. However, one often finds difficulties in getting well-calibrated standard gases, because of their production time and high price. Additional difficulty is that fractionation processes can occur inside the gas cylinder most likely due to pressure drop in long-term use. Therefore, studies on laboratory production of pure $CO_2$ isotope standard gas from stable solid calcium carbonate standard materials, have been performed. For this study, we propose a method to extract pure $CO_2$ gas without isotope fractionation from a solid calcium carbonate material. The method is similar to that suggested by Coplen et al., (1983), but is better optimized particularly to make a large amount of pure $CO_2$ gas from calcium carbonate material. The $CaCO_3$ releases $CO_2$ in reaction with 100% pure phosphoric acid at $25^{\circ}C$ in a custom designed, evacuated reaction vessel. Here we introduce optimal procedure, reaction conditions, and samples/reactants size for calcium carbonate-phosphoric acid reaction and also provide the details for extracting, purifying and collecting $CO_2$ gas out of the reaction vessel. The measurements for ${\delta}^{18}O$ and ${\delta}^{13}C$ of $CO_2$ were performed at Seoul National University using a stable isotope ratio mass spectrometer (VG Isotech, SIRA Series II) operated in dual-inlet mode. The entire analysis precisions for ${\delta}^{18}O$ and ${\delta}^{13}C$ were evaluated based on the standard deviations of multiple measurements on 15 separate samples of purified $CO_2$. The pure $CO_2$ samples were taken from 100-mg aliquots of a solid calcium carbonate (Solenhofen-ori $CaCO_3$) during 8-day experimental period. The multiple measurements yielded the $1{\sigma}$ precisions of ${\pm}0.01$‰ for ${\delta}^{13}C$ and ${\pm}0.05$‰ for ${\delta}^{18}O$, comparable to the internal instrumental precisions of SIRA. Therefore, we conclude the method proposed in this study can serve as a way to produce an accurate secondary and/or laboratory $CO_2$ standard gas. We hope this study helps resolve difficulties in placing a laboratory working standard onto the international isotope scales and does make accurate comparisons with other data sets from other groups.

Separation of Pu and Nd from Uranium Matrix by Equilibrated Cation Exchanger for Burnup Measurement of Irradiated Nuclear Fuel (조사후핵연료의 연소도 측정을 위한 동적이온교환체에 의한 우라늄 매질로부터 Pu 및 Nd의 분리)

  • Joe, Kih-Soo;Kim, Jung-Suk;Jeon, Young-Shin;Han, Sun-Ho;Eom, Tae-Yoon
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.259-264
    • /
    • 1993
  • Ion chromatographic method has been applied for burnup measurement of irradiated nuclear fuel by dynamic system using 1-octanesulfonate as a cation exchanger and $\alpha$-hydroxyisobutyric acid as an eluant. A number of elution techniques were evaluated for the optimum separation of plutonium, uranium and neodymium. These elements were individually separated and collected by gradient elution between 0.05 M and 0.40 M of $\alpha$-hydroxyisobutyric acid in a single column, and finally determined by isotope dilution mass spectrometry. The burnup data from this method were compared with those from conventional anion exchange method. The results showed a good agreement within 3.5 % of difference between two methods.

  • PDF

Measurements of low dose rates of gamma-rays using position-sensitive plastic scintillation optical fiber detector

  • Song, Siwon;Kim, Jinhong;Park, Jae Hyung;Kim, Seunghyeon;Lim, Taeseob;Kim, Jin Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3398-3402
    • /
    • 2022
  • We fabricated a 15 m long position-sensitive plastic scintillation optical fiber (PSOF) detector consisting of a PSOF, two photomultiplier tubes, four fast amplifiers, and a digitizer. A single PSOF was used as a sensing part to estimate the gamma-ray source position, and 137Cs, an uncollimated solid-disk-type radioactive isotope, was used as a gamma-ray emitter. To improve the sensitivity, accuracy, and measurement time of a PSOF detector compared to those of previous studies, the performance of the amplifier was optimized, and the digital signal processing (DSP) was newly designed in this study. Moreover, we could measure very low dose rates of gamma-rays with high sensitivity and accuracy in a very short time using our proposed PSOF detector. The results of this study indicate that it is possible to accurately and quickly locate the position of a very low dose rate gamma-ray source in a wide range of contaminated areas using the proposed position-sensitive PSOF detector.

Development and Validation of Primary Method for the Determination of Glucose in Human Serum by Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry and Comparison with Field Methods

  • Lee, Hwa Shim;Lee, Jong Man;Park, Sang Ryoul;Lee, Je Hoon;Kim, Yong Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1698-1702
    • /
    • 2013
  • Glucose is a common medical analyte measuring in human serum or blood samples. The development of a primary method is necessary for the establishment of traceability in measurements. We have developed an isotope dilution liquid chromatography tandem mass spectrometry as a primary method for the measurement of glucose in human serum. Glucose and glucose-$^{13}C_6$ in sample were ionized in ESI negative mode and monitored at mass transfers of m/z 179/89 and 185/92 in MRM, respectively. Glucose was separated on $NH_2P$-50 2D column, and the mobile phase was 20 mM $NH_4OAc$ in 30% acetonitrile/70% water. Verification of this method was performed by the comparison with NIST SRMs. Our results agreed well with the SRM values. We have developed two levels of glucose serum certified reference material using this method and distributed them to the clinical laboratories in Korea as samples for proficiency testings. The expended uncertainty was about 1.2% on 95% confidence level. In proficiency testings, the results obtained from the clinical laboratories showed about 3.6% and 3.9% RSD to the certified values. Primary method can provide the traceability to the field laboratories through proficiency testings or certified reference materials.

Raw Material and Provenance of Coin Minted in Goryo Dynasty( I ) : 'Haedong-Tongbo(해동통보) (고려시대 동전의 주조 원료와 산지( I ) -해동통보)

  • Kang, Hyung Tae;Kim, Gyu-Ho;chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.33-38
    • /
    • 2005
  • One piece of Haedong-Tongue(해동통보) minted at 1,102 A.D. was excavated from No.20 wooden coffin, Sinbong-dong, Cheongju. It was analyzed by micro-XRF and ICP and determined the concentrations of ten elements such as Cu, Pb, Sn, Zn, Fe, Mn, Sb, Co, As, Ag and Ni. The measurement of lead isotope ratios was also carried out in order to predict the provenance of raw materials used for minting of Haedong-Tongbo. It was found that Haedong-Tongbo was minted with three compositions of $Cu\;75.5\%,\;Pb\;13.3\%\;and\;Sn\;6.0\%$, which were different from the typical composition of Chosen-Tongbo and Sangpyung-Tongbo used in Chosen dynasty. Lead isotope ratios of Haedong-Tongbo showed that the provenance of lead used for minting of it suggested the possibility to be originated from Southern part of Korea.

  • PDF

New K-Ar dating system in Korea Basic Science Institute: Summary and Performance (한국기초과학지원연구원에 도입된 K-Ar 연대 측정시스템: 개요 및 성능)

  • 김정민
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.172-178
    • /
    • 2001
  • K-Ar dating system of Korea Basic Science Institute (KBSI) was installed in 1997 and has been used since then. The system consists of high temperature graphite furnace, gas purification system, and mass spectrometer with data acquisition system. K-Ar age is determined by the measurement of the concentrations of Ar and K through isotope dilution method using $^{38}Ar$ as spike and flame spectroscopy, respectively. The accuracy and reliability for the K-Ar age are checked using the several K-Ar standard materials. Although the exact age determination for young samples of less than 1 Ma is hampered by small fluctuations of sensitivity and mass discrimination, the present system yields the reliable K-Ar age compared to the standard materials of Tertiary and Mesozoic age. The measurements for the SORI93 biotite with the recommended K-Ar age of $92.6\pm$0.6 Ma and Bern4M muscovite of $18.5\pm$0.6 Ma yield the reliable age of $92.1\pm$1.1 Ma and $17.8\pm$0.2 Ma, respectively.

  • PDF