• 제목/요약/키워드: isothermal hydration heat generation

검색결과 2건 처리시간 0.016초

Model for simulating the effects of particle size distribution on the hydration process of cement

  • Chen, Changjiu;An, Xuehui
    • Computers and Concrete
    • /
    • 제9권3호
    • /
    • pp.179-193
    • /
    • 2012
  • The hydration of cement contributes to the performance characteristics of concrete, such as strength and durability. In order to improve the utilization efficiency of cement and its early properties, the particle size distribution (PSD) of cement varies considerably, and the effects of the particle size distribution of cement on the hydration process should be considered. In order to evaluate effects of PSD separately, experiments testing the isothermal heat generated during the hydration of cements with different particle size distributions but the same chemical composition have been carried out. The measurable hydration depth for cement hydration was proposed and deduced based on the experimental results, and a PSD hydration model was developed in this paper for simulating the effects of particle size distribution on the hydration process of cement. First, a reference hydration rate was derived from the isothermal heat generated by the hydration of ordinary Portland cement. Then, the model was extended to take into account the effect of water-to-cement ratio, hereinafter which was referred to as PSD hydration model. Finally, the PSD hydration model was applied to simulate experiments measuring the isothermal heat generated by the hydration of cement with different particle size distributions at different water-to-cement ratios. This showed that the PSD hydration model had simulated the effects of particle size distribution and water-to-cement ratio on the hydration process of cement with satisfactory accuracy.

플라이애쉬와 고로슬래그 미분말을 혼입한 지오폴리머 페이스트의 반응특성 분석 (Reaction Characteristics of Geopolymer Paste Incorporating Fly-ash and GGBS)

  • 신기수;박기봉
    • 한국건축시공학회지
    • /
    • 제20권4호
    • /
    • pp.321-330
    • /
    • 2020
  • 지오폴리머의 반응성은 원재료의 구성성분 및 Si/Al비, Na/Al비, 물-결합재비, 비정질 요소 등을 고려하여 명확한 메커니즘을 규명하는 것은 매우 중요하다. 따라서 원재료 및 알칼리 활성화제의 구성성분을 고려한 %Na2O, Ms는 반응성을 결정하는 중요한 요소가 된다. 하지만 다수의 연구에서는 알칼리 활성화제의 농도와 양생 조건 등의 기본적인 요소만을 고려하는 한계점을 나타내고 있다. 따라서 본 연구에서는 %Na2O, Ms 및 고로슬래그 미분말의 혼입량에 따른 지오폴리머 페이스트의 강도특성, 반응열, 길이변화, 미세구조 분석을 실시하였다.