• Title/Summary/Keyword: isothermal analysis

Search Result 430, Processing Time 0.022 seconds

Hydration and Mechanical Properties of High-volume Fly Ash Concrete with Nano-silica (나노 실리카를 혼입한 하이볼륨 플라이애시 콘크리트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Lee, Geon-Wook;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.112-119
    • /
    • 2022
  • Recently, as carbon neutrality has been important factor in the construction industry, many studies have been conducted on the high-volume fly ash concrete. High volume fly ash concrete(HVFC) is usually made by replacing more than 50% of cement with fly ash. However, HVFC has a disadvantage of low compressive strength in early age. To overcome this shortcoming of HVFC, improve this, interest in techonolgy using nanomaterials is increasing. Nano silica is expected to improve the early age strength of HVFC as a pozzolanic material. This study investigated the effect of nano silica on the early hydration reaction and microstructure of HVFC. The early hydration reaction of HFVC was analyzed through setting time, isothermal calorimeter, compressive strength and thermal weight analysis. In addition, the microstructure of HVFC was measured by mercury intrusion porosimetry. From the test results, it was confirmed that nano silica increased the early age strength and improve the microstructure of HVFC.

THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 2 - Effect of Groove Depth (사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제2보 - 그루브 깊이의 영향)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • Surface texturing is widely applied to friction surfaces of various machine elements. Most of the theoretical studies have focused on isothermal (ISO) analyses which consider constant lubricant viscosity. However, there have been limited studies on the effect of oil temperature increase owing to viscous shear. Following the first part of the present study that investigated the effects of film-temperature boundary condition (FTBC) and groove number on the thermohydrodynamic (THD) lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves, this study focuses on the effect of groove depths. Current study numerically analyzes the continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations using a commercial computational fluid dynamics (CFD) software, FLUENT. The results of variation in temperature, velocity, and pressure distributions as well as load-carrying capacity (LCC) and friction force indicate that groove depth and FTBC significantly influence the temperature distribution and pressure generation. The LCC is maximum near the groove depth at which the vortex starts, smaller than the ISO result. For intense grooves, the LCC of THD may be larger than that from ISO. The frictional force decreases as the groove becomes deeper, and decreases more significantly in the case of THD. The study shows that groove depth significantly influences the THD lubrication characteristics of surface-textured parallel thrust bearings.

Comparative Genomic Analysis and Rapid Molecular Detection of Xanthomonas euvesicatoria Using Unique ATP-Dependent DNA Helicase recQ, hrpB1, and hrpB2 Genes Isolated from Physalis pubescens in China

  • Faisal Siddique;Yang Mingxiu;Xu Xiaofeng;Ni Zhe;Haseeb Younis;Peng Lili;Zhang Junhua
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.191-206
    • /
    • 2023
  • Ground cherry (Physalis pubescens) is the most prominent species in the Solanaceae family due to its nutritional content, and prospective health advantages. It is grown all over the world, but notably in northern China. In 2019 firstly bacterial leaf spot (BLS) disease was identified on P. pubescens in China that caused by both BLS pathogens Xanthomonas euvesicatoria pv. euvesicatoria resulted in substantial monetary losses. Here, we compared whole genome sequences of X. euvesicatoria to other Xanthomonas species that caused BLS diseases for high similarities and dissimilarities in genomic sequences through average nucleotide identity (ANI) and BLAST comparison. Molecular techniques and phylogenetic trees were adopted to detect X. euvesicatoria on P. pubescens using recQ, hrpB1, and hrpB2 genes for efficient and precise identification. For rapid molecular detection of X. euvesicatoria, loop-mediated isothermal amplification, polymerase chain reaction (PCR), and real-time PCR techniques were used. Whole genome comparison results showed that the genome of X. euvesicatoria was more closely relative to X. perforans than X. vesicatoria, and X. gardneri with 98%, 84%, and 86% ANI, respectively. All infected leaves of P. pubescens found positive amplification, and negative controls did not show amplification. The findings of evolutionary history revealed that isolated strains XeC10RQ, XeH9RQ, XeA10RQ, and XeB10RQ that originated from China were closely relative and highly homologous to the X. euvesicatoria. This research provides information to researchers on genomic variation in BLS pathogens, and further molecular evolution and identification of X. euvesicatoria using the unique target recQ gene through advance molecular approaches.

Effect of stress relief heat treatment on the residual stress and hardness of additively manufactured Ti-6Al-4V alloy (응력제거 열처리 공정조건이 적층제조한 Ti-6Al-4V 합금의 잔류응력 및 경도에 미치는 영향)

  • Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.282-287
    • /
    • 2023
  • The effect of stress relief heat treatment temperature and duration time on the microstructure, residual stress and Vickers hardness of additively manufactured Ti-6Al-4V alloy using laser powder bed fusion process was clarified. As a result of stress relief heat treatment for 240 minutes at 823 K and 60 minutes or more at 873 K, residual stress was decreased less than 30 MPa without grain growth and phase transformation which causes dimensional distortion and deterioration of mechanical properties. In addition, hardness was increased with increasing heat treatment temperature and duration time. It was deduced that the refinement of acicular martensitic α' phase due to the increasing duration time of isothermal heat treatment at 773~873 K, which was not detected by XRD and phase map analysis using SEM-EBSD, probably increases the hardness.

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

Characteristics of the Co-Combustion of Coal and Bio-Solid Fuel using Biomass as an adjunct (석탄과 보조제로 바이오매스를 사용한 바이오 고형연료의 혼소 특성)

  • Hyeon, Wan-Su;Jin, Yong-Gyun;Jo, Eun-Ji;Han, Hyun-Goo;Min, Seon-Ung;Yeo, Woon-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.49-57
    • /
    • 2020
  • Due to the sewage sludge's characteristics of high water content and low calorific value, it is hard to use sewage sludge as an energy source. In this study, we investigated production of bio-solid fuel which is mixed both sewage sludge and woody biomass in order to improve the sewage sludge's characteristics and replace fossil fuels. A thermogravimetric analysis was used to investigate the co-combustion characteristics of the mixed coal and bio-solid fuel of 5%, 10%, 15%, respectively. The analysis was carried out under non-isothermal conditions by raising the internal temperature of 25℃ to 900℃ with an increment of 10℃/min. In the case of comparing single coal sample and mixture sample of coal and bio-solid fuel, the initiation combustion temperature has slightly changed. However, both the maximum combustion temperature and the termination start combustion temperature were hardly noticeable. The initiation combustion was occurred between 200~315℃ and the thermal decomposition causing a significant weight change occurred between 350~700℃. As a result of the kinetic analysis of the co-combustion, the activation energy was decreased as the mixing rate was higher. Therefore, it is able to co-combust the mixed coal and bio-solid fuel in power plants.

Using Synoptic Data to Predict Air Temperature within Rice Canopies across Geographic Areas (종관자료를 이용한 벼 재배지대별 군락 내 기온 예측)

  • 윤영관;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.199-205
    • /
    • 2001
  • This study was conducted to figure out temperature profiles of a partially developed paddy rice canopy, which are necessary to run plant disease forecasting models. Air temperature over and within the developing rice canopy was monitored from one month after transplanting (June 29) to just before heading (August 24) in 1999 and 2001. During the study period, the temporal march of the within-canopy profile was analyzed and an empirical formula was developed for simulating the profile. A partially developed rice canopy temperature seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures. On sunny days, air temperature at the height of maximum leafages was increased at the same rate as the ambient temperature above the canopy after sunrise. Below the height, the temperature increase was delayed until the solar noon. Air temperature near the water surface varied much less than those of the outer- and the upper-canopy, which kept increasing by the time of daily maximum temperature observed at the nearby synoptic station. After sunset, cooling rate is much less at the lower canopy, resulting in an isothermal profile at around the midnight. A fairly consistent drop in temperature at rice paddies compared with the nearby synoptic weather stations across geographic areas and time of day was found. According to this result, a cooling by 0.6 to 1.2$^{\circ}C$ is expected over paddy rice fields compared with the officially reported temperature during the summer months. An empirical equation for simulating the temperature profile was formulated from the field observations. Given the temperature estimates at 150 cm above the canopy and the maximum deviation at the lowest layer, air temperature at any height within the canopy can be predicted by this equation. As an application, temperature surfaces at several heights within rice fields were produced over the southwestern plains in Korea at a 1 km by 1km grid spacing, where rice paddies were identified by a satellite image analysis. The outer canopy temperature was prepared by a lapse rate corrected spatial interpolation of the synoptic temperature observations combined with the hourly cooling rate over the rice paddies.

  • PDF

Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase

  • Chen, Feiyan;Zhu, Kexuan;Chen, Lin;Ouyang, Liufeng;Chen, Cuihua;Gu, Ling;Jiang, Yucui;Wang, Zhongli;Lin, Zixuan;Zhang, Qiang;Shao, Xiao;Dai, Jianguo;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.461-474
    • /
    • 2020
  • Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

Characterization of Chemical Composition and Thermal Behavior of Biomass Originated from Tobacco Industry (담배산업유래 바이오매스의 화학성분 및 열분해 특성 평가)

  • Sung, Yong Joo;Seo, Yung Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.138-146
    • /
    • 2008
  • The chemical compositions, cell wall biopolymers and non-isothermal behavior of the stem biomass of Nicotiana Tabacum originated from tobacco industry were investigated in depth. On a weight basis, the contents of total ash and total sugar are 19.1% and 20.7% respectively. Lignin content was around 3% of tobacco stem biomass while pectin was over 7%. The holo-cellulose content in cell wall biopolymer was around 13% and the $\alpha$-cellulose constitutes 60% of the total holo-cellulose. The thermal behavior of stem biomass showed different patterns depending on either inert (nitrogen) or oxidizing (air) atmospheric condition. In the air atmosphere, the rapid thermal decompositions at around $473^{\circ}C$ and $581^{\circ}C$ were recorded as the peaks in DTG curve, while the peaks were not shown in the nitrogen atmosphere condition. The thermal analysis of the freeze dried soluble obtained from hot water extraction of tobacco stem biomass showed that the rapid thermal decomposition at around $581^{\circ}C$ in the air atmosphere was due to the residual char originated from the soluble fraction. The distinct difference in thermal decomposition between hemicellulose and cellulose were easily found in the DTG curve obtained in the nitrogen atmosphere.

Slow Cook-Off Test and Evaluation for HTPE Insensitive Propellants (HTPE 둔감추진제 완속가열 시험평가)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Kim, Jun-Hyung;Lee, Do-Hyung;Min, Byung-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • This study was carried out to investigate the thermal decomposition and execute EIDS slow cook-off test for the propellant ingredients and 2 kinds of HTPE propellants. The thermal analysis of the propellant ingredients used in this study showed that the thermal stability of these materials decreases in the following order : AP > HTPE > AN > BuNENA. In addition, propellant HTPE 002 containing AN showed that an endothermic process at around $125^{\circ}C$ corresponding to the solid phase change(II$\rightarrow$I) of AN was followed by the exothermic process of BuNENA/AN mixture up to $200^{\circ}C$. In EIDS slow cook-off tests, HTPE 001 and HTPE 002 reacted at around $250^{\circ}C$ and $152^{\circ}C$ respectively, and both of them showed sudden temperature increase curves at $115^{\circ}C$. The critical temperatures, $T_c$, of thermal explosion for the propellants HTPE 001 and HTPE 002, were obtained from both the non-isothermal curves at various heating rates and Semenov's thermal explosion theory. Kissinger's method that was used to calculate $T_c$ was also employed to obtain the activation energies for thermal decompositions.