• Title/Summary/Keyword: isotherm adsorption

Search Result 896, Processing Time 0.024 seconds

A Study for the Removal of Phosphorous Using Coated Exfoliated Vermiculite (인 제거를 위한 코팅 발포질석 적용 가능성 연구)

  • Kim, Seogku;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.5-13
    • /
    • 2014
  • In this study, exfoliated vermiculite (EV) coated with glycerol was tested for its abiility to remove phosphorus in aqueous solution. The glycerol modified vermiculite (GS) was prepared with EV/glycerol ratio of 1/4 where glycerol contained 4 mol% $H_2SO_4$ and heated until designated temperature. GS heated at $380^{\circ}C$ showed that the specific surface area was $53.1m^2/g$ and mass loss due to oxidation of carbon was maximum from TGA analysis. Removal of phosphorus using GS heated at $380^{\circ}C$ was well explained by Langmuir isotherm model and maximum sorption capacity of 714.3 mg/kg is comparable or greater than those of other clay orignated sorbents for phosphorus.

Quantitative Assay of Hepatitis B Surface Antigen by Using Surface Plasmon Resonance Biosensor

  • Hwang, Sang-Yoon;Yoo, Chang-Hoon;Jeon, Jun-Yeoung;Choi, Sung-Chul;Lee, Eun-Kyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.309-314
    • /
    • 2005
  • We performed a basic experiment for the rapid, on-line, real-time measurement of hepatitis B surface antigen using a surface plasmon resonance biosensor. We immobilized anti­HBsAg (hepatitis B surface antigen) polyclonal antibody, as a ligand, to the dextran layer on a CM5 chip surface that had previously been activated by N-hydroxysuccinimide. A sample solution containing HBsAg was fed through a microfluidic channel, and the reflecting angle change due to the mass increase from the binding was detected. The binding characteristics between HBsAg and its polyclonal antibody followed the typical monolayer adsorption isotherm. When the entire immobilized antibody had interacted, no additional, non-specific binding occurred, suggesting the immunoreaction was very specific. The bound antigen per unit mass of the antibody was independent of the immobilized ligand density. No significant steric hindrance was observed at an immobilization density of approximately $17.6 ng/mm^2$. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the ligand was linear up to ca. $40{\mu}g$/mL. This linearity was much higher than that of the ELISA method. It appeared the anti­gen-antibody binding increased as the immobilized ligand density increased. In summary, this study showed the potential of this SPR biosensor-based method as a rapid, simple and multi­sample on-line assay. Once properly validated, it may serve as a more efficient method for HBsAg quantification for replacing the ELISA.

Development of Biomolecular Device Using Biomolecular Film Part 1: Optical Biosensor to Detect the Ethanol Using Langmuir-Blodgett Film of Eilzyme Molecules (생체분자막을 이용한 생물분자소자의 개발 제1부 :효소분자 LB막을 이용한 에탄올 측정용 광학 바이오센서)

  • 최정우;배주연지용이원홍
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.105-112
    • /
    • 1995
  • The fiber-optic biosensor using enzyme-immobilized Langmuir-Blodgett film is developed fort the measurement of ethanol. The enzyme, alcohol dehydrogenase, is immobilized at the molecular level on the arachidic acid monolayer using Langmuir-Blodgett film technique. Based on the ordered multisubstrate mechanism, the immobilized enzyme kinetics is investigated. The optical sensing system is proposed, and sensor signal is proportional to ethanol concentration and is related wish the number of enzyme layers. As the number of deposited LB film layer increases up to 20 1ayers, the high ethanol concentration of 45mM can be measured without the saturation of signal. Surface pressure-area isotherm is measured for the three-different charged-lipids. Arachidic acid is the most suitable for the adsorption of alcohol dehydrogenase based on electrostatic force.

  • PDF

Effect of Pore Structure of Activated Carbon Fiber on Mechanical Properties (활성탄소섬유의 기공구조가 기계적 특성에 미치는 영향)

  • Choi, Yun Jeong;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.318-324
    • /
    • 2018
  • In this study, PAN (polyacrylonitrile) based activated carbon fibers were prepared by water vapor activation method which is a physical activation method. Activation was performed with temperature and time as parameters. When the activation temperature reached 700, 750 and $800^{\circ}C$, the activation was carried out under the condition of a water vapor flow rate of 200 ml/min. In order to analyze the pore structure of activated carbon fibers, the specific surface area ($S_{BET}$) was measured by the adsorption/desorption isotherm of nitrogen gas and AFM analysis was performed for the surface analysis. Tensile tests were also conducted to investigate the effect of the pore structure on mechanical properties of fibers. As a result, the $S_{BET}$ of fibers after the activation showed a value of $448{\sim}902m^2/g$, the tensile strength decreased 58.16~84.92% and the tensile modulus decreased to 69.81~83.89%.

Preparation of Iron Nanoparticles Impregnated Hydrochar from Lignocellulosic Waste using One-pot Synthetic Method and Its Characteristics (One-pot 합성 방법을 이용한 나노 철입자가 담지된 폐목재 기반 하이드로차의 제조 및 특성 평가)

  • Choi, Yu-Lim;Kim, Dong-Su;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.95-105
    • /
    • 2020
  • In this study, iron nanoparticles impregnated hydrochar (FeNPs@HC) was synthesized using lignocellulosic waste and simple one-pot synthetic method. During hydrothermal carbonization (HTC) process, the mixture of lignocellulosic waste and ferric nitrate (0.1~0.5 M) as a precursor of iron nanoparticles was added and heated to 220℃ for 3 h in a teflon sealed autoclave, followed by calcination at 600℃ in N2 atmosphere for 1 h. For the characterization of the as-prepared materials, X-ray diffraction (XRD), cation exchange capacity (CEC), fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), Energy Dispersive X-ray Spectroscopy (EDS) were used. The change of Fe(III) concentration in the feedstock influenced characteristics of produced FeNPs@HC and removal efficiency towards As(V) and Pb(II). According to the Langmuir isotherm test, maximum As(V) and Pb(II) adsorption capacity of Fe0.25NPs@HC were found to be 11.81 and 116.28 mg/g respectively. The results of this study suggest that FeNPs@HC can be potentially used as an adsorbent or soil amendment for remediation of groundwater or soil contaminated with arsenic and cation heavy metals.

Sorption of Arsenate by the Calcined Mg-Al Layered Double Hydroxide (소성된 Mg-Al Layered Double Hydroxide에 의한 비소(V)의 흡착)

  • Seo, Young-Jin;Kang, Yun-Ju;Choi, Jung;Kim, Jun-Hyeong;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.369-373
    • /
    • 2008
  • Special concern has been given to the elevated arsenic content in soils because of its high mobility and toxicity. Layered double hydroxide (LDH) which has a high anionic exchange capacity is another potential anion adsorbent for toxic anions such as arsenic, chromate and selenium etc. The uptake of arsenate from aqueous solutions by the calcined Mg-Al LDH has been investigated. The sorption capacity was about 530 mmol/kg. Sorption isotherm was defined as L-type in which arsenate was removed by LDH through anion uptake reaction. Arsenate sorption by the calcined Mg-Al LDH was occurred by reconstruction of LDH's framework. Competitive adsorption revealed that Mg-Al LDH had higher selectivity for arsenate than for sulfate. These results strongly suggest that calcined Mg-Al LDH has a promising potential for efficient removal of toxic metal oxides like arsenates from aqueous environments.

Biosorption of Copper by Immobilized Biomass of Pseudomonas stutzeri

  • Cho, Ju-Sik;Hur, Jae-Seoun;Kang, Byung-Hwa;Kim, Pil-Joo;Sohn, Bo-Kyoon;Lee, Hong-Jae;Jung, Yeun-Kyu;Heo, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.964-972
    • /
    • 2001
  • The kinetics of copper ion biosorption by Pseudomonas stutzeri cells immobilized in alginate was investigated. During the first few minutes of the metal uptake, the copper biosorption was rapid and then became progressively slower until an equilibium was rapid, and then became progressively slower until an equilibrium was reached. At a biomass concentration of 100g/l, the copper biosorption reaction reached approximately 90% of the equilibrium position within 30 min. A Freundich-type adsorption isotherm model was constructed based on kinetics with different amounts of biomass. When using this model, the experimental values only agreed well with the predicted values in a solution containing less than 200 mg/l Cu(II). Desorption of the bound copper ions was achieved using electrolytic solutions of HCl, $H_2SO_4$, EDTA, and NTA (0.1 or 0.5 M). Metal desorption with 0.1 M NTA allowed the reuse of the biosorbent for at least ten consecutive biosorption/desorption cycles, without an apparent decrease in its metal biosorption capability. A packed-bed column reactor of the immobilized biomass removed approximately 95% of the metal in the first 30 liter of wastewater [containing 100 mg/l Cu(II)] delivered at a rate of 20 L/day, and, thereafter, the rate gradually decreased.

  • PDF

Breakthrough behaviour of NBC canister against carbon tetrachloride: a simulant for chemical warfare agents

  • Srivastava, Avanish Kumar;Shah, D.;Mahato, T.H.;Singh, Beer;Saxena, A.;Verma, A.K.;Shrivastava, S.;Roy, A.;Yadav, S.S.;Shrivastava, A.R.
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • A nuclear, biological, chemical (NBC) canister was indigenously developed using active carbon impregnated with ammoniacal salts of copper (II), chromium (VI) and silver (I), and high efficiency particulate aerosol filter media. The NBC canister was evaluated against carbon tetra chloride ($CCl_4$) vapours, which were used as a simulant for persistent chemical warfare agents under dynamic conditions for testing breakthrough times of canisters of gas masks in the National Approval Test of Respirators. The effects of $CCl_4$ concentration, test flow rate, temperature, and relative humidity (RH) on the breakthrough time of the NBC canister against $CCl_4$ vapour were also studied. The impregnated carbon that filled the NBC canister was characterized for surface area and pore volume by $N_2$ adsorption-desorption isotherm at liquid nitrogen temperature. The study clearly indicated that the NBC canister provides adequate protection against $CCl_4$ vapours. The breakthrough time decreased with the increase of the $CCl_4$ concentration and flow rate. The variation in temperature and RH did not significantly affect the breakthrough behaviour of the NBC canister at high vapour concentration of $CCl_4$, whereas the breakthrough time of the NBC canister was reduced by an increase of RH at low $CCl_4$ vapour concentration.

Comparison and Estimation of Equilibrium Constants for Deoxyribonucleosides by Plate Theory and Moment Method (단이론과 모멘트방법을 이용한 데옥시리보뉴클레오사이드의 평형상수의 계산 및 비교)

  • Lee, Ju Weon;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.403-409
    • /
    • 1997
  • The equilibrium constants of five deoxyribonucleosides (dDyd, dUrd, dGuo, dThd, dAdo) were estimated by the plate theory and the moment method under isocratic conditions of the Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The mobile phase in this system was composed of water and organic modifiers(acetonitrile and methanol) The plate theory of linear adsorption isotherm was treated on the basis of continuous flow of eluent through the plates of the column. The moment method was utilized to find the equilibrium constant from the first absolute moment of experimental data. The equilibrium constants of five deoxyribonucleosides in the two methods were very close, and also the equilibrium constants calculated by capacity factor were similar to those by both the plate theory and the moment method. The equilibrium constant was expressed as a semi-log function of the quantity of organic modifier. Excellent agreements between the calculated elusion profile by the plate theory and the experimental data were observed.

  • PDF

Dyeing Property and Antimicrobial activity of Protein Fiber Using Terminalia chebula Retzius Extract (가자열매 추출물을 이용한 단백질 섬유의 염색과 항균효과)

  • Nam, Ki Yeon;Lee, Jung Soon
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.476-484
    • /
    • 2014
  • The purpose of this study was to investigate the dyeing properties and anti-microbial ability of silk and wool fabrics dyed with Terminalia chebula Retzius(TCR) extract using two extraction solvent, hot water and methanol. Dyeing properties of fabrics were studied by investigating the characteristics of colorant, changes in dye uptake under different dyeing conditions, and by investigating color change when mordants were applied. Also, color fastness, and antimicrobial activity of dyed fabrics were estimated. Regardless of extraction solvent type, colorant showed maximum absorption wavelength at 280 nm and 578 nm, which implied that tannin was the major pigment component of TCR. Also, through FT-IR spectrum result, it was confirmed that tannin of TCR methanol extract was hydrolysable tannin. But for the hot water extract, it was only assumed that its tannin was condenced tannin. Fabric dyed with hot water solvent extract showed higher dye uptake than fabric dyed with methanol solvent extract, dye uptake increasing by higher concentration of the dye, longer dyeing time and higher dyeing temperature. And the absorption curve between TCR extract and protein fiber was shaped in the form of Langmuir adsorption isotherm. Fabric dyed without mordant was yellow in color, and when dyed with mordant, fabric showed various colors depending on mordant types except Sn. Color fastness to washing was generally fine and color fastness to light was moderate. But color fastness to rubbing and dry cleaning was outstanding. Lastly, dyed fabrics showed very good antimicrobial activity of 99.9% against Staphylococcus aureus and Kiebsiella pneumoniae.