• Title/Summary/Keyword: isotherm adsorption

Search Result 897, Processing Time 0.025 seconds

Adsorptions Isotherm of Water Vapor for Infant Formula Milk Powders and Calculation of Isosteric Heat (저장온도에 따른 복합조제분유의 등온흡습곡선 및 흡습엔탈피 산출)

  • Min, Sang-Gi;Choi, Mi-Jung;Lee, Seong
    • Food Science of Animal Resources
    • /
    • v.18 no.4
    • /
    • pp.285-291
    • /
    • 1998
  • Adsorption isotherms of water vapour for infant formula milk powders manufactured by P. M. and N company in Korea were measured at temperatures between 20, 30 and 40$^{\circ}C$ using COST-90 modified method. Results showed that the isotherms were sigmoidal in shape. The adsorption isotherms of milk powder were depending on the temperature and products. The BET-model were applied and analyzed to compare the experimental value. It was found that the BET-model is fitted with measuring data. Sample P showed the lowest monolayer value and sample N showed the highest. Isosteric heat obtained upon application of BET-model was calculated in this field of temperature using the Clausius-Clapeyron equation. It is suggested that the usage of the BET-model to estimate the heat of water sorption in infant formula milk powder should be in agreement with the results from COST-90 project.

  • PDF

Removal of Phenol from Aqueous Solutions by Activated Red Mud: Equilibrium and Kinetics Studies

  • Shirzad-Siboni, Mehdi;Jafari, Seyed-Javad;Farrokhi, Mehrdad;Yang, Jae Kyu
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • In this work, removal of phenol from aqueous solutions by activated red mud was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to observe the morphology and surface components of activated red mud, respectively. The effects of various parameters on the removal efficiency were studied, such as contact time, pH, initial phenol concentration, and adsorbent dosage. The removal percentage of phenol was initially increased, as the solution pH increased from 3 to 7, and then decreased above neutral pH. The removal percentage of phenol was decreased by increasing the initial phenol concentrations. Adsorption results show that equilibrium data follow the Freundlich isotherm, and kinetic data was well described by a pseudo-second-order kinetic model. Experimental results show that the activated red mud can be used to treat aqueous solutions containing phenol, as a low cost adsorbent with high efficiency.

Characteristics of Surface Modified Activated Carbons Prepared by Potassium Salt Sequentially After Hydrochloric Acid Treatment

  • Oh, Won-Chun;Park, Chong-Sung;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2006
  • The objective of this paper is to compare the variation of surface properties by hydrochloric acid pre-treatment and of metallic potassium and their salts loading effect for activated carbon after surfaces transformation by acid. From the results of nitrogen adsorption, each isotherm shows a distinct knee band, which is closely related to the characteristic of microporous carbons with capillary condensation in micropores. In order to present the causes of the differences in surface properties and $S_{BET}$ after the samples were treated with hydrochloric acid, pore structure and surface morphology are investigated by adsorption analysis. X-ray diffraction (XRD) patterns indicate that activated carbons show better performance for metallic potassium and potassium salts by pre-treatment with hydrochloric acid. Scanning electron microscopy (SEM) pictures of potassium/activated carbon particles provide information about the homogeneous distribution of metal or metal complex on the surface. For the chemical composition microanalysis for potassium treatment of the activated carbon pre-treated with hydrochloric acid, samples were analyzed by energy disperse X-ray (EDX). Finally, the type and quality of oxygen groups are determined from the method proposed by Boehm. A positive influence of the acidic groups on the carbon surface by acid treatment is also demonstrated by an increase in the contents of potassium salts with increasing of acidic groups calculated from Boehm titration.

  • PDF

Moisture Sorption Isotherm Characteristics of Chaga Mushroom Powder as Influenced by Particle Size

  • Lee, Min-Ji;Lee, Jun-Ho
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.154-158
    • /
    • 2007
  • Adsorption isotherms for chaga mushroom powder as influenced by particle size were investigated using a gravimetric technique. Samples were equilibrated in desiccators containing sulfuric acid solutions of known water activity (0.11-0.93), then placed in temperature-controlled chambers for approximately ten days. Equilibrium moisture content (EMC) of chaga mushroom powder increased with water activity in all samples. EMC was slightly greater in the samples comprised of smaller particle size, however there was no marked difference in appearance between the three samples. The chaga mushroom powder exhibited Type II behavior. When the BET model was used to determine mean monolayer values, 0.077, 0.077, and 0.070 $H_2O/dry$ solid was observed for <250, 250-425, and $425-850\;{\mu}m$ sized samples, respectively, however mean monolayer values were 0.121, 0.111, and 0.101 $H_2O/dry$ solid, respectively, when the GAB model was used. The experimental EMC values were related to the computed values from Henderson's model. The coefficient of determination and standard error for the linear regression were 0.997 and 0.003, respectively.

Corrosion Inhibition of Carbon Steel in Sulfuric Acid Using Cymbopogon citratus as a Green Corrosion Inhibitor

  • Gadang, Priyotomo;Tamara Emylia Suci, Nurarista;Yanyan, Dwiyanti;Bening Nurul Hidayah, Kambuna;Arini, Nikitasari;Siska, Prifiharni;Sundjono, Sundjono
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.423-433
    • /
    • 2022
  • The objective of this study was to determine whether Cymbopogon citratus extract as a corrosion inhibitor from natural tropical resources could prevent corrosion of carbon steel in sulfuric acid solution. Inhibitory action of this extract was investigated using electrochemical methods such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Those methods revealed corrosion rate, efficiency of inhibition, and adsorptions isotherm values when the extract was added to the sulfuric acid solution at concentration up to 500 ppm with various immersion time at ambient temperature. Results revealed that higher concentration of the extract and longer immersion time decreased the corrosion rate of carbon steel whereas the inhibition efficiency of the extract was increased up to 97.25%. The value of charge transfer resistance was increased significantly by adding the extract at concentration up to 500 ppm with an immersion time of 60 minutes. The type of the extract was a mixed inhibitor. It could inhibit the corrosion process in both anodic and cathodic sides electrochemically. Results of this study suggest that the mechanism of adsorption on the surface of carbon steel is related to Langmuir adsorption isotherm.

Adsorption Characteristics of Sr ion and Cs ion by a Novel PS-zeolite Adsorbent Immobilized Zeolite with Polysulfone (Polysulfone으로 제올라이트를 고정화한 새로운 PS-zeolite 비드에 의한 Sr 이온 및 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Park, Jeong-Min;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.671-678
    • /
    • 2015
  • The adsorption characteristics of Sr and Cs ions were investigated by using PS-zeolite beads prepared by immobilizing zeolite with polysulfone (PS). The adsorption kinetics of Sr and Cs ions by PS-zeolite beads was described well by the pseudo-second-order model. The maximum adsorption capacities of Sr and Cs ions calculated from Langmuir isotherm model were 65.0 mg/g and 76.4 mg/g, respectively. In the binary system of Sr ion and Cs ion, the adsorption capacities of each ion decreased with increasing mole ratio of mixed counterpart ion, and Cs ion showed the higher hinderance than Sr ion. We found that thermodynamic properties of Sr and Cs ions on absorption reaction were spontaneous and endothermic at 293 to 323 K.

Adsorption Isotherms of Catechin Compounds on (+)Catechin-MIP

  • Jin, Yinzhe;Wan, Xiaolong;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1549-1553
    • /
    • 2008
  • A molecular imprinted polymer (MIP) using (+)catechin ((+)C) as a template and acrylamide (AM) as a functional monomer was prepared. Acetonitrile was used as the porogen with ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2'-azobis(isobutyronitrile) (AIBN) as the initiator. The adsorption isotherms in the MIP were measured and the parameters of the equilibrium isotherms were estimated by linear and nonlinear regression analyses. The linear equation for original concentration and adsorpted concentrations was then expressed, and the adsorption equilibrium data were correlated into Langmuir, Freundlich, quadratic, and Langmuir Extension isotherm models. The mixture compounds of (+)C and epicatechin (EC) show competitive adsorption on specific binding sites of the (+)catechin-MIP. The adsorption concentrations of (+)C, epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG), on the (+)catechin-molecular imprinted polymer were compared. Through the analysis, the (+)catechin-molecular imprinted polymer showed higher adsorption ability than blank polymer which was synthesized molecular imprinted polymer without (+)catechin. Furthermore, the competitive Langmuir isotherms were applied to the mixture compounds of (+)C and EC.

Adsorption removal of p-xylene by organo-clays (유기점토를 이용한 p-자일렌 흡착 제거)

  • Cho, Yunchul;Kim, Taesung;Han, Sunkee;Lee, Chaeyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.747-756
    • /
    • 2012
  • The purpose of this study was to investigate adsorption characteristics of organo-clays for removal of p-xylene. As part of efforts to examine the adsorption capacities of some organo-clays for p-xylene, batch isotherm tests were carried out. Organo-clay minerals were synthesized under hydrothermal conditions using Na-montmorillonite as host clay and dimethyldioctadecylammonium (DMDA) bromide and benzyldimethyldodecylammonium (BDDA) chloride as organic surfactants, respectively. All synthetic organo-clay minerals were characterized by powder x-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX). The modification using dimethyldioctadecylammonium (DMDA) bromide showed the higher adsorption ability for p-xylene than benzyldimethyldodecylammonium (BDDA) chloride. On the other hand, the maximum adsorption capacity, $Q_{max}$ of DMDA modified montmorillonite estimated by Langmuir model was 27.0 mg/g, which was the higher value than other organo-clays.

Preparation of PVC-Al(OH)3 Beads Immobilized Al(OH)3 with PVC and their Adsorption Characteristics for Fluoride Ions from Aqueous Solution (Al(OH)3를 PVC로 고정화한 PVC-Al(OH)3 비드의 제조와 수중의 불소 이온의 흡착 특성)

  • You, Hae-Na;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.887-893
    • /
    • 2014
  • In order to remove fluoride ions from aqueous solution, PVC-$Al(OH)_3$ beads were prepared by immobilizing $Al(OH)_3$ with polyvinyl chloride (PVC). The prepared PVC-$Al(OH)_3$ bead was characterized by using SEM, EDS and Zeta potential. Dependences of pH, contact time and initial fluoride concentration on the adsorption of fluoride ions were studied. The optimal pH was in the range of 4~10. The adsorption was rapid during the initial 12 hr, and equilibrium was attained within 72 hr. The adsorption rate of fluoride ions by PVC-$Al(OH)_3$ beads obeyed the pseudo-second-order kinetic model. The maximum adsorption capacity obtained from Langmuir isotherm model was found to be 62.68 mg/g.

Cost-effective polyvinylchloride-based adsorbing membrane for cationic dye removal

  • Namvar-Mahboub, Mahdieh;Jafari, Zahra;Khojasteh, Yasaman
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2020
  • The current study focused on the preparation of low-cost PVC-based adsorbing membrane. Metakaolin, as available adsorbent, was embedded into the PVC matrix via solution blending method. The as-prepared PVC/metakaolin mixed matrix membranes were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), pure water permeability and contact angle measurements. The results confirmed the improvement of PWP and hydrophilicity due to the presence of metakaolin in the PVC matrix. Additionally the structure of PVC membrane was changed due to the incorporation of metakaolin in the polymer matrix. The static adsorption capacity of all samples was determined through dye removal. The effect of metakaolin dosage (0-7%) and pH (4, 8, 12) on dye adsorption capacity was investigated. The results depicted that the highest adsorption capacity was achieved at pH of 4 for all samples. Additionally, adsorption data were fitted on Langmuir, Freundlich, and Temkin models to determine the appropriate governing isotherm model. Finally, the dynamic adsorption capacity of the optimum PVC/metakaolin membrane was studied using dead-end filtration cell. The dye removal efficiency was determined for pure PVC and PVC/metakaolin membrane. The results demonstrated that PVC/metakaolin mixed matrix membrane had a high adsorption capacity for dye removal from aqueous solution.