• Title/Summary/Keyword: isomorphic

Search Result 236, Processing Time 0.023 seconds

Chemical Treatment of Low-level Radioactive Liquid Wastes(II) (The Determination of Cation Exchange Capacity on various Clay Minerals)

  • Lee, Sang-Hoon;Sung, Nak-Jun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.75-81
    • /
    • 1977
  • This experiment has been carried out to determine the pH dependent cation exchange capacity concerning the sorption phenomenon of long-lived radionuclides contained in low-level liquid radioactive waste on various clay minerals. The pH dependent cation exchange capacity determined by Sawhney's method are used to the analysis of sorption phenomenon. About 70 percent of the total cation exchange capacity is contributed by the pH dependent CEC due to the negative charge originated naturally in clays in case of clinoptilolite, vermiculite and sodalite. It is sugested in this test that the high neutral salt CEC, that is, highly charged clays would show good fixation yield. The removal of radionuclides at the pH range more than pH 9 is considered the hydroxide precipitation of metal ion rather than the cation exchange. The Na-clay prepared by the method of successive isomorphic substitution with electrolyte showed a considerable improvement in removal efficiency for the decontamination.

  • PDF

Analysis of Effect of Learning to Solve Word Problems through a Structure-Representation Instruction. (문장제 해결에서 구조-표현을 강조한 학습의 교수학적 효과 분석)

  • 이종희;김부미
    • School Mathematics
    • /
    • v.5 no.3
    • /
    • pp.361-384
    • /
    • 2003
  • The purpose of this study was to investigate students' problem solving process based on the model of IDEAL if they learn to solve word problems of simultaneous linear equations through structure-representation instruction. The problem solving model of IDEAL is followed by stages; identifying problems(I), defining problems(D), exploring alternative approaches(E), acting on a plan(A). 160 second-grade students of middle schools participated in a study was classified into those of (a) a control group receiving no explicit instruction of structure-representation in word problem solving, and (b) a group receiving structure-representation instruction followed by IDEAL. As a result of this study, a structure-representation instruction improved word-problem solving performance and the students taught by the structure-representation approach discriminate more sharply equivalent problem, isomorphic problem and similar problem than the students of a control group. Also, students of the group instructed by structure-representation approach have less errors in understanding contexts and using data, in transferring mathematical symbol from internal learning relation of word problem and in setting up an equation than the students of a control group. Especially, this study shows that the model of direct transformation and the model of structure-schema in students' problem solving process of I and D stages.

  • PDF

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

An Index Structure for Substructure Searching In Chemical Databases (화학 데이타베이스에서 부분구조 검색을 위한 인덱스 구조)

  • Lee Hwangu;Cha Jaehyuk
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.641-649
    • /
    • 2004
  • The relationship between chemical structures and biological activities is researched briskly in the area of 'Medicinal Chemistry' At the base of these structure-based drug design tries, medicinal chemists search the existing drugs of similar chemical structure to target drug for the development of a new drug. Therefore, it is such necessary that an automatic system selects drug files that have a set of chemical moieties matching a user-defined query moiety. Substructure searching is the process of identifying a set of chemical moieties that match a specific query moiety. Testing for substructure searching was developed in the late 1950s. In graph theoretical terms, this problem corresponds to determining which graphs in a set are subgraph isomorphic to a specified query moiety. Testing for subgraph isomorphism has been proved, in the general case, to be an NP- complete problem. For the purpose of overcoming this difficulty, there were computational approaches. On the 1990s, a US patent has been granted on an atom-centered indexing scheme, used by the RS3 system; this has the virtue that the indexes generated can be searched by direct text comparison. This system is commercially used(http://www.acelrys.com/rs3). We define the RS3 system's drawback and present a new indexing scheme. The RS3 system treats substructure searching with substring matching by means of expressing chemical structure aspredefined strings. However, it has insufficient 'rerall' and 'precision‘ because it is impossible to index structures uniquely for same atom and same bond. To resolve this problem, we make the minimum-cost- spanning tree for one centered atom and describe a structure with paths per levels. Expressing 2D chemical structure into 1D a string has limit. Therefore, we break 2D chemical structure into 1D structure fragments. We present in this paper a new index technique to improve recall and precision surprisingly.

The Effects of Mathematical Problem Solving with Multiple Strategies on the Mathematical Creativity and Attitudes of Students (다전략 수학 문제해결 학습이 초등학생의 수학적 창의성과 수학적 태도에 미치는 영향)

  • Kim, Seoryeong;Park, Mangoo
    • Education of Primary School Mathematics
    • /
    • v.24 no.4
    • /
    • pp.175-187
    • /
    • 2021
  • The purpose of this study is to investigate the effects of solving multi-strategic mathematics problems on mathematical creativity and attitudes of the 6th grade students. For this study, the researchers conducted a survey of forty nine (26 students in experimental group and 23 students in comparative group) 6th graders of S elementary school in Seoul with 19 lessons. The experimental group solved the multi-strategic mathematics problems after learning mathematics through mathematical strategies, whereas the group of comparative students were taught general mathematics problem solving. The researchers conducted pre- and post- isomorphic mathematical creativity and mathematical attitudes of students. They examined the t-test between the pre- and post- scores of sub-elements of fluency, flexibility and creativity and attitudes of the students by the i-STATistics. The researchers obtained the following conclusions. First, solving multi-strategic mathematics problems has a positive impact on mathematical creativity of the students. After learning solving the multi-strategic mathematics problems, the scores of mathematical creativity of the 6th grade elementary students were increased. Second, learning solving the multi-strategy mathematics problems impact the interest, value, will and efficacy factors in the mathematical attitudes of the students. However, no significant effect was found in the areas of desire for recognition and motivation. The researchers suggested that, by expanding the academic year and the number of people in the study, it is necessary to verify how mathematics learning through multi-strategic mathematics problem-solving affects mathematical creativity and mathematical attitudes, and to verify the effectiveness through long-term research, including qualitative research methods such as in-depth interviews and observations of students' solving problems.

Studies on the G-banding Patterns of Normal and of Delayed Spiralized Chromosomes by BUdR in Dwarf Hamsters (Dwarf Hamster의 正常染色體와 BUdR에 의해 凝縮遲延된 染色體의 G-banding Pattern에 대한 硏究)

  • Hahn, Sahsook
    • The Korean Journal of Zoology
    • /
    • v.18 no.2
    • /
    • pp.71-86
    • /
    • 1975
  • The G-banding patterns of normal and of delayed spiralized chromosomes by BUdR were investigated in three established cell lines of dwarf hamsters. The results obtained were as follows: 1. The number of G-bands appeared in Chinese hamster T-233 cell line was 65. The centromeric dark band was found in No.1 chromosome and weakly stained bands were also observed in part of the centromeric regions of Nos. 2, 3, 8 and $X_2$ chromosomes. Two homologous X chromosomes were found in different banding patterns. Terminal dark bands were shown in No. 1 chromosome. No conspicuous bands appeared in No. 10 chromosome. 2. Eighty four bands appeared in Armenian hamster Y-1249 cell line. Centromeric dark bands were observed in Nos. 5 and 10 chromosomes and moderatly stained bands were also found in near the centromeric region of the long arms of Nos. 7 and 9 chromosomes. Two isomorphic X chromosomes were also distinguished by their banding patterns. 3. In Y-1313 Armenian hamster cell line, the bands were 69. No centromeric dark bands were observed in this cell line, but moderatly stained bands appeared in the centromeric area in the long arm of No. 9 chromosome. The banding patterns of these two cell lines of Armenian hamster were quite different and readily distinguished. Only No. 8 chromosome showed similar G-banding patterns. Although Nos. 5, 7 abd 8 chromosomes revealed the same number of bands in these two cell lines, the location and staining intensity were quite different. 4. Chromosomes of Nos. 1, 2, 6, $X_1$ and $X_2$ in T-233 cell line and of 1, 4, 7, 8, 9, $X_1$ and $X_2$ in both cell lines of Armenian hamster were found to be elongated due to the inhibition of mitotic spiralization by BUdR. G-banding patterns of these chromosomes were found to be identical to those of normal chromosomes in these cell lines.

  • PDF