• Title/Summary/Keyword: isomerase

Search Result 314, Processing Time 0.021 seconds

Studies on Whole Cell Immobilized Glucose Isomerase - I. Preparation and Properties of Whole Cell Immobilized Glucose Isomerase - (포도당 이성화 효소의 세포 고정화에 관한 연구 - I. 세포 고정화 효소의 제조와 성질 -)

  • Ahn, Byung-Yoon;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.192-199
    • /
    • 1979
  • With cells of Streptomyces spp K-45 isolated from soil, the immobilization of glucose isomerase by a series of treatments ; heat, carefully manipulated drying, extrusion with a thickening agent, and glutaraldehyde-induced crosslinking, was presented. This was aimed to obtain a mechanically stable form of whole cell containing glucose isomerase. The resulted pellet form had a good mechanical strength, compared with a commercial product, and showed 26 % of the activity recovery. The specific activity was 48.1 units per g of the dry material. The immobilized glucose isomerase generally showed properties similar to those of the soluble enzyme ; optimal pH at $7.5{\sim}9.0$, optimal temperature at $80{\sim}85^{\circ}C$, activation energy of 10.9 kcal/mole, and $K_m$ for glucose of 10.9M. The immobilized enzyme was very thermostable and pH stable.

  • PDF

Isolation of a cDNA Encoding a Chloroplast Triosephosphate Isomerase from Strawberry

  • Kim, In-Jung;Lee, Byung-Hyun;Jinki Jo;Chung, Won-Il
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.115-121
    • /
    • 2000
  • A cDNA clone encoding chloroplast triosephosphate isomerase (TPI-cp) was isolated from strawberry fruit cDNA library. Sequence analyses indicated that the cDNA contains an open reading frame of 314 amino acids (33.5 kDa) composed of a transit peptide (59 amino acids) in amino terminal region and mature protein (255 amino acids). The existence of transit peptide in the deduced amino acid sequence implies that it encodes a chloroplast isoform. The protein sequence is more similar to other plant chloroplast isoforms than cytosolic isoforms. RNA blot analysis indicated that its expression is ubiquitous in examined five tissues, flowers, leaves, petioles, roots and fruits, and shows differential pattern according to fruit ripening. Genomic DNA blot analysis showed that TPI-cp is encoded by multiple genes in strawberry. Through sequence comparison and phylogenetic tree construction, TPI-cp is distinctively grouped into dicot and chloroplast isoforms.

  • PDF

Monoclonal Antibody Refolding and Assembly: Protein Disulfide Isomerase Reaction Kinetics

  • Park, Sun-Ho;Ryu, Dewey D.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • The protein disulfide isomerase (PDI) reaction kinetics has been studied to evaluate its effect on the monoclonal antibody (Mab) refolding and assembly which accompanies disulfide bend formation. The MAb in vitro assembly experiments showed that the assembly rate of heavy and light chains can be greatly enhanced in the presence of PDI as compared to the rate of assembly obtained by the air-oxidation. The reassembly patterns of MAb in-termediates were identical for both with and without PDI, suggesting that the PDI does not determine the MAb assembly pathway, but rather facilitates the rate of MAb assembly by promoting PDI catalyzed disulfide bond formation. The effect of growth rate on PDI activities for MAb production has also been examined by using continuous culture system. The specific MAb productivity of hybridoma cells decreased as the growth rate increased. However, PDI activities were nearly constant fur a wide range of growth rates except very high growth rate, indicating that no direct correlation between PDI activity and specific MAb productivity exists.

Monoclonal Antibody Refolding and Assembly: Protein Disulfide Isomerase Reaction Kinetics

  • Park, Sun-Ho;Ryu, Dewey D.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 1996
  • The protein disulfide isomerase(PDI) reaction kinetics has been studied to evaluate its effect on the monoclonal antibody(MAb) refolding and assembly which accompanies disulfide bond formation The MAb in vitro assembly experiments showed that the assembly rate of heavy and light chains can be greatly enhanced in the presence of PDI as compared to the rate of assembly obtained by the air-oxidation. The reassembly patterns of MAb intermediates were identical for both with and without PDI, suggesting that the PDI does not determine the MAb assembly pathway, but rather facilitates the rate of MAb assembly by promoting PDI catalyzed disulfide bond formation. The effect of growth rate on PDI activities for MAb production has also been examined by using continuous culture system. The specific MAb productivity of hybridoma cells decreased as the growth rate increased. However, PDI activities were nearly constant for a wide range of growth rates except very high growth rate, indicating that no direct correlation between PDI activity and specific MAb productivity exists.

  • PDF

Emerging roles of protein disulfide isomerase in cancer

  • Lee, Eunyoug;Lee, Do Hee
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.401-410
    • /
    • 2017
  • The protein disulfide isomerase (PDI) family is a group of multifunctional endoplasmic reticulum (ER) enzymes that mediate the formation of disulfide bonds, catalyze the cysteine-based redox reactions and assist the quality control of client proteins. Recent structural and functional studies have demonstrated that PDI members not only play an essential role in the proteostasis in the ER but also exert diverse effects in numerous human disorders including cancer and neurodegenerative diseases. Increasing evidence suggests that PDI is actively involved in the proliferation, survival, and metastasis of several types of cancer cells. Although the molecular mechanism by which PDI contributes to tumorigenesis and metastasis remains to be understood, PDI is now emerging as a new therapeutic target for cancer treatment. In fact, several attempts have been made to develop PDI inhibitors as anti-cancer drugs. In this review, we discuss the properties and diverse functions of human PDI proteins and focus on recent findings regarding their roles in the state of diseases including cancer and neurodegeneration.

Studies on the Cell Immobilization of Alkalophilic Streptomyces sp. B-2 for the Glucose Isomerization (포도당 이성화를 위한 Alkalophilic Streptomyces sp. B-2의 균체 고정화에 관한 연구)

  • 이은숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.3
    • /
    • pp.319-322
    • /
    • 1998
  • The whole cell of alkalophilic Streptomyces sp. B-2 which produce glucose isomerase was immobilized by entrapment method for the effective production of high fructose syrup. The highest immobilized activity was achieved when the enzyme was bound to 2% $textsc{k}$-carrageenan. Immobilized glucose isomerase the pH optimum was about pH 7.5~8.5. Immobilization of alkalophilic Streptomyces sp. B-2 on 2% $textsc{k}$-carrageenan at 7$0^{\circ}C$ showed an increase in glucose isomerase activity. GI activity of immobilized cells was maximum Co2+ concentration 10-3M, Mg2+ concentration 10-3M.

  • PDF

Production of Fructose Corn Syrup by Glucose Isomerase (Glucose isomerase 효소를 이용한 이성화당(과당) 생산에 관한 연구)

  • 백성원;유두영
    • Korean Journal of Microbiology
    • /
    • v.18 no.2
    • /
    • pp.59-66
    • /
    • 1980
  • Two strains S-P and S-P-2, both Streptomyces sp., have been isolated and were found to have relatively high specific enzyme activity compared to other organisms reported. The specific activity of the enzyme produced from these two strains were 0.25 and 0.2 international units respectively. The productivity of the enzyme achieved was about 50 IU/l/hr. Glucose isomerase form these strains was found to be stable under the temperature of heat treatment (at $65^{\circ}C$) for fixation of enzyme inside the dell. This organism has an advantage in that it did not require toxic metalic ion for enzyme activity and could utilize xylan in leu of xylose as an inducer. The optimal temperature and pH of enzymatic reaction purpose of using these data for the optimal operation and designing of enzyme reactor system. The reaction mechanism was found to follow the single substrate reversible reaction kinetics. The kinetic constants determined experimentally are : $K_{mf}=0.33M,\;K_{mb}=1.0M,\;V_{mf}=0.88{\mu}mole\;per\;min.,\;V_{mb}= 2.96{\mu}mole\;per\;min.\;and\;K_{eq}=0.74.

  • PDF

Coexpression of Protein Disulfide Isomerase (PDI) Enhances Production of Kringle Fragment of Human Apolipoprotein(a) in Recombinant Saccharomyces cerevisiae

  • Cha Kwang-Hyun;Kim Myoung-Dong;Lee Tae-Hee;Lim Hyung-Kweon;Jung Kyung-Hwan;Seo Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.308-311
    • /
    • 2006
  • In an attempt to increase production of LK8, an 86-amino-acid kringle fragment of human apolipoprotein(a) with three disulfide linkages, protein disulfide isomerase (PDI) was coexpressed in recombinant Saccharomyces cerevisiae harboring the LK8 gene in the chromosome. Whereas overexpression of the LK8 gene without coexpressing PDI was detrimental to both host cell growth and LK8 production, coexpression of PDI increased the LK8 production level by 2.5-fold in batch cultivation and 5.0-fold in fed-batch cultivation compared with the control strain carrying only the genomic PDI gene.

A Study on the Production of Glucose Isomerase by Alkalophilic Streptomyces sp. B-2 (호알칼리성 Streptomyces sp. B-2에 의한 Glucose Isomerase 생성에 관한 연구)

  • An, Tae-Yeong;Lee, Eun-Suk;Song, Jun-Hui
    • The Korean Journal of Food And Nutrition
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1989
  • Glucose isomerase (E.C.5.3.1.5) which reversibly catalyzes reaction between D-glucose and D-fructose was demonstrated in cell free extracts of alkalophilic Streptomyces sp. B-2 isolated from soil The optimum temperature, pH, and pH stability were 6$0^{\circ}C$, 10.5, and 7.8, respectively. The production of Gl in xylose and yeast extract was higher than that of other carbon source and nitrogen source. The Gl production was affected by Co2+ and Mg2).

  • PDF

Mannose-Based Selection with Phosphomannose-Isomerase (PMI) Gene as a Positive Selectable Marker for Rice Genetic Transformation

  • Penna, Suprasanna;Ramaswamy, Manjunatha Benakanare;Anant., Bapat Vishvas.
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.233-236
    • /
    • 2008
  • A positive selectable marker system was adapted for transformation of mature embryo-derived calli of Indica rice (Oryza sativa L.) utilizing the PMI gene encoding for phosphomannose-isomerase that converts mannose-6-phosphate to fructose-6-phosphate. The transformed cells grew on medium supplemented with 3% mannose as carbon source and calli were selected on media containing various concentrations of mannose. Molecular analyses showed that the transformed plants contained the PMI gene. The results indicate that the mannose selection system can be used for Agrobacterium-mediated transformation of mature embryo in rice to substitute the use of conventional selectable markers in genetic transformation.

  • PDF