• Title/Summary/Keyword: isoleucine repression

Search Result 3, Processing Time 0.018 seconds

Nutritional Conditions of Xylanase Production from Xylose Fermenting Yeast (Xylose 발효효모의 Xylanase 생성)

  • 배명애;김남순;방병호;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.85-87
    • /
    • 1989
  • Cultural conditions for the formation of extracellular xylanase by Candida sp. X-6-41 were investigated. The xylanase was not produced in culture medium containing polypeptone or yeast extract as a nitrogen source, respectively, whereas the enzyme w8s produced in chemically defined medium containing (NH$_4$)$_2$SO$_4$as a sole nitrogen source. The xylanase production was affected by the amino acids such as isoleucine and tryptophan. The enzyme production of the strain was completely inhibited by the addition of isoleucine in the culture medium, but enhanced by tryptophan below the concentration of 25$\mu$g/$m\ell$.

  • PDF

Sustained Production of Amino Acids by Immobilized Analogue- resistant Mutants of a Cyanobacterium Anacystis nidulans BD-1

  • Bagchi, Suvendra Nath;Rao, Nandula Seshgiri
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.341-344
    • /
    • 1997
  • Batch cultures of Anacystis nidulans BD-1 resistant to azaleucine and fluorotyrosine produced and liberated a wide range of amino acids, notably glutamic acid, alanine, phenylalanine, leucine, isoleucine, cysteine and methionine. Sustained liberation for prolonged periods was achieved after immobilization on calcium alginate and the net concentration in the medium was 0.18-0.2 g $I^{-1}$. While acetohydroxy acid synthase in azaleucine-resistant mutant lost leucine- and isoleucine-sensitivity, fluorotyrosine-resistant strain turned phenylalanine activating. The activities of nitrate assimilating enzymes were also higher in the mutants and were relaxed from ammonium-repression. The metabolic adjustments involved in amino acid overproduction are discussed.

  • PDF

Regulation of the Expression of the Catabolic Acetolactate Synthase by Branched Chain Amino Acids in Serratia marcescens

  • Joo, Han-Seung;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.210-213
    • /
    • 1999
  • In Serratia marcescens, acetolactate produced by the catabolic acetolactate synthase (ALS) is converted into acetoin, its physiological role of which is to maintain intracellular pH homeostasis. In this study, the expression mode of catabolic ALS by aeration and branched-chain amino acids was examined by the ELISA method. The amount of catabolic ALS decreased approximately 93% under aerobic conditions. We also showed that the expression of catabolic ALS decreased approximately 34 % and 65 % in the presence of 2.5 mM and 10 mM leucine, respectively. The repression of catabolic ALS by leucine has not been reported previously. In contrast to leucine, catabolic ALS levels increased approximately 13% and 38% by treatment with 2.5 mM and 10 mM isoleucine, respectively, while valine alone did not have any significant effect on the synthesis of catabolic ALS. The amount of catabolic ALS was also reduced to approximately 32% and 45% in the presence of 10 mM Leu+Ile and Leu+Ile+Val, respectively. The regulatory mode of the Serratia catabolic ALS suggests that catabolic ALS may also have a role in supplying acetolactate as an intermediate of valine and leucine biosynthesis in addition to the maintenance of internal pH.

  • PDF