• 제목/요약/키워드: isolation bearing

검색결과 245건 처리시간 0.028초

Foundation size effect on the efficiency of seismic base isolation using a layer of stone pebbles

  • Banovic, Ivan;Radnic, Jure;Grgic, Nikola
    • Earthquakes and Structures
    • /
    • 제19권2호
    • /
    • pp.103-117
    • /
    • 2020
  • The effect of the foundation size on the efficiency of seismic base isolation using a layer of stone pebbles is experimentally investigated. Four scaled models of buildings with different stiffnesses (from very stiff to soft) were tested, each with the so-called small and large foundation, and exposed to four different accelerograms (different predominant periods and durations). Tests were conducted so that the strains in the model remained elastic and afterwards the models were tested until collapse. Each model was tested for the case of the foundation being supported on a rigid base and on an aseismic layer. Compared to the smaller foundation, the larger foundation results in a reduced rocking effect, higher earthquake forces and lower bearing capacity of the tested models, with respectable efficiency (reduced strain/stress, displacement and increase of the ultimate bearing capacity of the model) for the considered seismic base isolation compared to the foundation on a rigid base.

정밀 제진대 개발 및 동특성에 관한 실험적 연구 (Development of precision vibration isolation table and study of dynamic characteristics with experiment)

  • 김인수;김종연;한문성;김영중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.329-334
    • /
    • 2001
  • Recently, the high precision technology can not be developed continuously if we don't have anti vibration technology. Vibration isolation technology using an air spring and laminated robber bearing is widely used because it has excellent vibration isolation characteristics. We developed high precision vibration table with two good element(air spring and LRB) for semiconductor factory. Air Spring is used for isolating the vertical vibration and LRB is used for isolating the horizontal Vibration. As a result, It has D-Class degree in BBR-Criteria. In this paper, we talk about orifice characteristics in the self-damped air spring and design flow of the laminated robber bearing. The orifice characteristics is delicate shade of length and diameter. When we do experimentation to find orifice characteristics, length is fixed and diameter is changed. The orifice diameter is the wider and the air spring stiffness is the softer.

  • PDF

면진용 교좌장치의 거동 특성과 내진 성능 비교 (Comparisons of Behavioral Characteristics and Seismic Performance of Seismic Isolation Bearing Systems)

  • 한규승;한경봉;박선규
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.79-89
    • /
    • 2000
  • In this paper, the seismic analysis and the modeling techniques have been introduced for aseismic performances assessment, when seismic isolation bearings are applied on a real bridge. Nonlinear time-history analysis is carried out using finite element analysis program. In this study, EI Centro earthquake(1940, N00W), Mexico earthquake(1985, N90W), and earthquake simulation from modified SIMQKE are used as earthquake ground excitations. The seismic response of seismically isolated bridge is compared with that of a bridge using conventional Pot Bearings, after obtaining the displacements of the deck, the deformations of the piers, shear forces and moments of the bottoms of the piers. The analytical analysis results show that seismic isolation bearing, especially seismic isolation bearings with sliding mechanism, could reduce earthquake forces.

적층고무받침이 설치된 단층 래티스 돔의 동적 거동 특성에 관한 연구 (A Study on the Characteristics of Dynamic Behavior of Single Layer Latticed Domes with Laminated Rubber Bearing)

  • 한상을;배상달
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.425-432
    • /
    • 2001
  • This paper presents the studies of the characteristics of dynamic behavior of single layer latticed domes with laminated rubber bearing and establishes the effectiveness of the system. The base isolation system installed between base and structures reduces the responses due to earthquake motions and increases the natural period of structures. Numerical analysis is carried out using modal superposition method and Newmark-βmethod which is linear acceleration method with (equation omitted) : 1/2 and β : 1/6. The time interval Δt for response calculation is 0.001 sec. Damping ratio is 2 % as Rayleigh damping and El Centro NS(1940) as earthquake motion is the input excitation data. The acceleration response of dome with base isolation is reduced to 30 % of the response of non-isolation system. From the results of the numerical studies on the models, it is confirmed that base isolation system effectively suppresses the responses of the domes subjected to horizontal earthquakes.

  • PDF

Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing

  • Hwang, Yongmoon;Lee, Chan Woo;Lee, Junghoon;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.323-335
    • /
    • 2020
  • Magnetorheological elastomer (MRE), a smart material, is an innovative material for base isolation system. It has magnetorheological (MR) effect that can control the stiffness in real-time. In this paper, a new hybrid base isolation system combining two electromagnetic closed circuits and the roller bearing is proposed. In the proposed system, the roller part can support the vertical load. Thus, the MRE part is free from the vertical load and can exhibit the maximum MR effect. The MRE magnetic loop is constructed in the free space of the roller bearing and forms a strong magnetic field. To demonstrate the performance of the proposed hybrid base isolation system, dynamic characteristic tests and performance evaluation were carried out. Dynamic characteristic tests were performed under the extensive range of strain of the MRE and the change of the applied current. Performance evaluation was carried out using the hybrid simulation under five earthquakes (i.e., El Centro, Kobe, Hachinohe, Northridge, and Loma Prieta). Especially, semi-active fuzzy control algorithm was applied and compared with passive type. From the performance evaluation, the comparison shows that the new hybrid base isolation system using fuzzy control algorithm is superior to passive type in reducing the acceleration and displacement responses of a target structure.

Design and analysis of isolation effectiveness for three-dimensional base-seismic isolation of nuclear island building

  • Zhu, Xiuyun;Lin, Gao;Pan, Rong;Li, Jianbo
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.374-385
    • /
    • 2022
  • In order to investigate the application of 3D base-seismic isolation system in nuclear power plants (NPPs), comprehensive analysis of constitution and design theory for 3-dimensional combined isolation bearing (3D-CIB) was presented and derived. Four different vertical stiffness of 3D-CIB was designed to isolate the nuclear island (NI) building. This paper aimed at investigating the isolation effectiveness of 3D-CIB through modal analysis and dynamic time-history analysis. Numerical results in terms of dynamic response of 3D-CIB, relative displacement response, acceleration and floor response spectra (FRS) of the superstructure were compared to validate the reliability of 3D-CIB in mitigating seismic response. The results showed that 3D-CIB can significantly attenuate the horizontal acceleration response, and a fair amount of the vertical acceleration response reduction of the upper structure was still observed. 3D-CIB plays a significant role in reducing the horizontal and vertical FRS, the vertical FRS basically do not vary with the floor height. The smaller the vertical stiffness of 3D-CIB is, the better the vertical isolation effectiveness is, whereas, it will increase the displacement and the rocking effect of superstructure. Although the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted, it should be designed by properly accounting for the balance between the isolation effectiveness and displacement control including rocking effect. The results of this study can provide the technical basis and guidance for the application of 3D-CIB to engineering structure.

시험평가법을 이용한 IRB 면진장치 롤러 설계 : Part 1. 기하학적 형상 및 크라우닝 (Roller Design of IRB Seismic Isolation Device Using Testing Evaluation : Part I. Geometry Dimension and Crowning)

  • 박영기;하성훈;성민상;전준철;최승복
    • 한국소음진동공학회논문집
    • /
    • 제23권2호
    • /
    • pp.185-191
    • /
    • 2013
  • This paper presents a new method for roller design of IRB(isolation roller bearing) seismic isolation device using experimental evaluation. Three layered plate is adopted for the IRB in which the upper plate is placed on x direction and the lower plate is placed on y direction. The rollers placed in each plate make a plate movement. The roller is then optimally designed using variable geometric conditions. Stress distribution depends on the diameter and length of the roller and hence this is used for the determination of optimal geometry of the roller. In the experimental evaluation, it is observed that stress concentration at the end sides of roller is decreased and geometric coefficients depend on crowning dimension. In addition, in order to determine optimal design parameters of the roller the plastic deformation and friction are experimentally identified.

Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

  • Eem, Seunghyun;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.600-606
    • /
    • 2019
  • Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments.

교량용 탄성받침의 설계압축응력에 대한 고찰 (The Design Criteria of elastomeric Bearing for Highway Bridges)

  • 전규식;이병진;조해진;정명호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.481-488
    • /
    • 1998
  • Elastomeric bearing is used as one of the most useful way for isolation structures, because the horizontal stiffness is much lower than the vertical stiffness. In the design criteria of Elastomeric bearing, the stability of the bearings is evaluated by shear strain due to compression, lateral displacement, and rotation. The question how soft rubber can sustain heavy structure is now able to be solved by Ultimate capacity test of Laminated Elastomeric Bearings, which results 1,200kg/$\textrm{cm}^2$ of the max. compressive stress and this shows what a sufficient safety factor Elastomeric bearing has !

  • PDF

납-고무 받침에 의해 면진된 원전구조물의 응답에 대한 Bouc-Wen 모델 및 지진특성의 영향 (Effect of Bouc-Wen Model and Earthquake Characteristics for Responses of Seismically Isolated Nuclear Power Plant by Lead-Rubber Bearing)

  • 송종걸;손민균
    • 한국지진공학회논문집
    • /
    • 제21권2호
    • /
    • pp.95-103
    • /
    • 2017
  • In order to modeling seismic isolation system such as lead-rubber bearing (LRB), bilinear model is widely used by many researchers. In general, an actual force-displacement relationship for LRB has a smooth hysteretic shape. So, Bouc-Wen model with smooth hysteretic shape represents more accurately actual hysteretic shape than bilinear model. In this study, seismic responses for seismically isolated nuclear power plant (NPP) with LRB modelled by Bouc-Wen and bilinear models are compared with those of NPP without seismic isolation system. To evaluate effect of earthquake characteristics for seismic responses of NPP isolated by LRB, 5 different site class earthquakes distinguished by Geomatrix 3rd Letter Site Classification and artificially generated earthquakes corresponding to standard design spectrum by Reg. Guide 1.60 are used as input earthquakes. From the seismic response results of seismically isolated NPP, it can be observed that maximum displacements of seismic isolation modelled by Bouc-Wen model are larger than those by bilinear model. Seismic responses of NPP with LRB is significantly reduced than those without LRB. This reduction effect for seismic responses of NPP subjected to Site A (rock) earthquakes is larger than that to Site E (soft soil) earthquakes.