• Title/Summary/Keyword: isolated contraction

Search Result 365, Processing Time 0.023 seconds

Vasorelaxing Mechanism of Crude Saponin of Korea Red Ginseng in the Resistance-sized Mesenteric Artery of Rat

  • Kim, Shin-Hye;Park, Hyung-Seo;Lee, Mee-Young;Oh, Young-Sun;Kim, Se-Hoon
    • Journal of Ginseng Research
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • It has been well known that Korea red ginseng has an antihypertensive effect. The antihypertensive effect may be due to its ability to change the peripheral resistance. Change of vascular tone in the resistance-sized artery contribute to the peripheral resistance, thereby regulate the blood pressure. Therefore, we investigated to clarify the vasorelaxing mechanism induced by crude saponin of Korea red ginseng in the resistance-sized mesenteric artery of rats. The resistance-sized mesenteric artery was isolated and cut into a ring. The ring segment was immersed in HEPES-buffered solution and its isometric tension was measured using myograph force-displacement transducer. Crude saponin of ginseng relaxed the mesenmetric arterial rings precontracted with norepinephrine (3$\mu$M) in dose-dependent manner (0.01 mg/㎖ -1 mg/㎖. The relaxation by crude saponin was smaller in endothelium-intact preparation than that in endothelium-denuded preparation. The contraction induced by A23187 or phorbol 12,13-dibutyrate was not affected by crude saponin of ginseng. The vasorelaxing effect of crude saponin of ginseng was significantly attenuated by the increase of the extracellular K$\^$+/ concentration. Crude saponin-induced vasorelaxation was not affected by tetraethylammonium (1 mM), glybenclamide (10$\mu$M), and 4-aminopyridine (0.1 mM) in these preparations. Ba$\^$2+/(10$\mu$M ∼100$\mu$M) markedly reduced the crude saponin-induced vasorelakation dose-dependently. From the above results, we suggest that crude saponin of ginseng may stimulate K$\^$+/ efflux and hyperpolarize the membrane, thereby cause the vasorelaxation in the resistance-sized mesenteric artery of rats.

A Study on the Expansion of Secondary Battery Manufacturing Technology through the Scale of V4 and Energy Platform (V4와 에너지 플랫폼 규모화를 통한 2차 전지 제조 기술 확대 방안)

  • Seo, Dae-Sung
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.87-94
    • /
    • 2022
  • This paper seeks to raise inflection points of battery manufacturing bases in Korea in the V4 region through the reorganization of new industrial technologies in accordance with ESG. As a result, the global supply chain market is cut off. The Russian-Ukraine war and the U.S.-China hegemony are competing in the economic crisis caused by COVID-19. It is showing diversification of new suppliers in an environment where mineral, grain procurement, gas, and even wheat imports from China and Russia are not possible. As a protective glocal, this area is used as a buffer zone(Pro-Russia, Hungary). to an isolated zone(anti-Russia, Poland) by war. In this paper, economic growth is expected to slow further due to the EU tapering period and high inflation in world countries. Due to these changes, the conversion of new tech industry and the contraction of Germany's structure due to energy supply may lose the driving force for economic growth over the past 20 years. This is caused by market disconnection(chasm) in the nominal indicators in this area. On the other hand, Korea should actively develop into the V4 area as an energy generation export (nuclear and electric hydrogen generation) area as a bypass development supply area due to the imbalance in the supply chain of rare earth materials that combines AI. By linking this industry, the energy platform can be scaled up and reliable supply technology (next generation BT, recycling technology) in diversification can be formed in countries around the world. This paper proves that in order to overcome the market chasm caused by the industries connection, new energy development and platform size can be achieved and reliable supply technology (next-generation battery and recycling technology, Low-cost LFP) can be diversified in each country.

Responsiveness of Muscarinic and Alpha Adrenergic Activation on Endothelial Cell in Isolated Canine Renal Arteries (개 신동맥 내피세포의 무스카린성 및 알파 아드레날린성 수용체에 대한 작용)

  • Chung, Soo-Youn;Chang, Ki-Churl;Lim, Jung-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.43-51
    • /
    • 1989
  • Responsiveness of muscarinic and alpha adrenoceptor activation on endothelial cells was studied in isolated canine renal artery rings. Ach (10-100 nM), dose dependently, relaxes endothelial intact rings precontracted with phenylephrine ($IC_{50}$ of Ach was 34.5 nM). Selective mechanical destruction of the endothelium transformed the activity of this substance from vasodilatation to vasoconstriction. Acetylcholine induced relaxations could be selectively inhibited competitively by atropine, but could not be inhibited by cyclooxygenase inhibitor. Methylene blue, however, an inhibitor of soluble guanylate cyclase activity, inhibited Ach as well as sodium nitroprusside (SNP) induced relaxation. Relaxation produced by prostacyclin was not modified by methylene blue. On the other hand, alpha adrenoceptor agonist did not relax but contract canine renal artery rings possessing an intact intima precontracted with U-46619. Clonidine, however, selective alpha-2 adrenergic agonist, is more susceptible than phenylepherine, selective alpha-1 adrenergic agonist, to the inhibitory effect of contraction. These results suggest that in canine renal artery rings, 1) muscarinic receptor is responsible for releasing endothelium dependent relaxation factor (EDRF). 2) alpha-1 and alpha-2 adrenergic receptors are present in canine renal artery. 3) relaxation via EDRF is antagonized by methylene blue, providing further evidence that EDRF acts through a cGMP mechanism.

  • PDF

Mechanism of Inhibitory Effect of Imipramine on Isolated Rat Detrusor Muscle in Relation to Calcium Modulation (흰쥐 적출 방광 배뇨근의 수축성에 대한 Imipramine의 작용과 Calcium동원 기전과의 관계)

  • Lee, Jong-Bum;Yoo, Kae-Joon;Ha, Jeoung-Hee;Kwon, Oh-Cheol;Lee, Kwang-Youn;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.81-89
    • /
    • 1992
  • Enuresis is a common voiding disorder among children. There are several therapeutic regimens for the disorder available today; behavioral therapies, psychotherapy, bladder training, sleep interruption, hypnosis and drug therapy. Recently, the efficacy of drug therapy has been acknowledged, particularly of antidepressants. Among the tricyclic antidepressants, imipramine is most frequently employed for the treatment of enuresis. Present study was undertaken to investigate the mechanism of imipramine on the contractility of urinary bladder in relation to the calcium modulation using isolated strips of rat detrusor urinae. 1. The electric fileld stimulation-induced contraction was abolished by imipramine, but partially inhibited by atropine. 2. Imipramine reduced the basal tone and diminished the phasic activity of detrusor muscle concentration-dependently, which was similar to that of diltiazem, a calcium channel blocker. 3. Imipramine suppressed the maximal responses and shifted the concentration-response curves of bethanechol and ATP to right. 4. Imipramine inhibited the calcium-induced recovery of tension in calcium-free physiologic salt solution (PSS) with a mode of action similar to that of diltizaem. 5. A23187, a calcium ionophore recovered the basal tone which had been reduced by imipramine in normal PSS. 6. In calcium-free PSS, A23187 could recover the abolished basal tone with the pretreatment of imipramine, but it exerted a partial recovery with the pretreatment of TMB-8, an inhibitor of intracellular calcium release. Based on these results, it is suggested that the inhibitory action of imipramine on the detrusor muscle exerted in part by blockade of the muscarinic and purinergic receptors, and interference with the influx of extracellular calcium, but not with the release of intracellular stored calcium, is involved in its mechanism of action.

  • PDF

Effects of Ouabain and Vanadate on the Spontaneous Contractions and Electrical Activity in Guinea-pig Taenia Coli (결장뉴 전기활동도에 대한 Ouabain과 Vanadate의 작용)

  • Park, Jong-Kyou;Kim, Ki-Whan;So, In-Suk
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.189-206
    • /
    • 1988
  • The effects of ouabain on the contractile and electrical activities were investigated in the isolated preparations of guinea-pig taenia coli, and compared with those of vanadate. Spontaneous contractions were recorded with force transducer, and electrical activites were measured by use of suction electrode, or single sucrose-gap technique. The contractions were induced by the electrical stimulation for 5 seconds every 1 minute with alternating current (60 Hz, 3.0 V/cm) through the platinum electrodes located in parallel with the long axis of the preparation. All experiments were performed in tris-buffered Tyrode solution which was aerated with $100%{\;}O_2$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) Responses of spontaneous contractions to ouabain were concentration-dependent; $10^{-7}M$ ouabain caused a rise of basal tone. Above the concentration of $10^{-6}M$ ouabain, an initial increase followed by a decrease in tension was observed. 2) A continuous spike discharge was induced by the administration of $10^{-7}M$ ouabain. Above $10^{-6}M$ ouabain, a transient initial increase followed by a decrease in spike frequency and amplitude was produced, and finally membrane potential was sustained at a certain level without a spike discharge. 3) The characteristic response to $10^{-7}M$ ouabain was not blocked by the pretreatment with $10^{-7}M$ atropine. 4) The electrically induced contractions were completely suppressed at the concentration of $2{\times}10^{-7}M$ ouabain. These contractions were blocked more rapidly in paralled with the increase in ouabain concentration. 5) Effects of vanadate on the spontaneous activities were quite different from those of ouabain; $10^{-6}M$ vanadate increased the amplitude of contractions and $10^{-5}M$ vanadate increased slightly both amplitude and frequency of spontaneous contractions. $10^{-4}M$ vanadate showed irregular phasic contractions superimposed on the increased basal tone. 6) $10^{-5}M$ vanadate depolarized the membrane potential and shortened the interval between the bursts of spike discharge, whereas $10^{-4}M$ vanadate induced continuous spike discharge with membrane depolarization. 7) Vanadate caused a characteristic inhibitory response to the contractions induced by electrical stimulation; An initial rapid inhibition of tension development and then gradual recovery to a certain level. From the above results, the following conclusions could be made: 1) The rise of basal tone at $10^{-7}M$ ouabain is due to continuous spike discharge without a silent period. The continuous spike discharge is likely to be associated with a slight membrane depolarization caused by the blockage of Na pump. 2) The biphasic response induced by above $10^{-6}M$ ouabain seems to occur by the different mechanisms. The initial increase in tension is associated with depolarization along with an increase in spike frquency, whereas the subsequent relaxation occurs through a non-electrical mechanism. 3) The characteristic response to $10^{-7}M$ ouabain is resulted not from the action on intrinsic nerve terminal, but from its direct action on the membrane of smooth muscle cells. 4) The phasic contractions superimposed on the increased basal tone at the concentration of $10^{-4}M$ vanadate is resulted from the continuous spike discharge with membrane depolarization, of which mechanism remains unknown. 5) The inhibitory action of ouabain on the electrically induced contractions suggests that the increasein intracellular Na in some way inhibits the electrically induced $Ca^{2+}$ influx. The mechanism of vanadate action on the induced contractions remains unknown.

  • PDF