• 제목/요약/키워드: isoform

검색결과 324건 처리시간 0.03초

Activation of Phospholipase D in Rat Thymocytes by Sphingosine

  • Lee, Young-kyun;Choi, Myung-Un
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권10호
    • /
    • pp.1451-1489
    • /
    • 2002
  • Sphingosine is known to regulate a wide range of cell physiology including growth, differentiation, and apoptosis. In this study, we examined the effect of sphingosine on the phospholipase D (PLD) activity in rat thymocytes. Sphingosine potently stimulated PLD in the absence of extracellular calcium, while depletion of intracellular calcium by BAPTA/AM treatment completely blocked activation of PLD by sphingosine. Sphingosine-induced increase of the intracellular calcium concentration was confirmed using a fluorescent calcium indicator Fluo-3/AM. A phosphoinositide-specific phospholipase C inhibitor U73122 partially inhibited the stimulation of PLD by sphingosine. When mouse PLD2 gene was transfected into mouse thymoma EL4 cells, which lack intrinsic PLD activity, sphingosine could stimulate PLD2 significantly while overexpression of human PLD1 had no effect. Taken together, the sphingosine-stimulated PLD activity in rat thymocytes is dependent on the mobilization of intracellular calcium and appears to be due to the PLD2 isoform.

골격근의 활동 의존적 가소성 (Activity-dependent plasticity in skeletal muscle)

  • 김식현
    • PNF and Movement
    • /
    • 제6권1호
    • /
    • pp.41-51
    • /
    • 2008
  • Purpose : This paper reviews evidence supporting adaptive plasticity in skeletal muscle fibers induced by various exercise training and neuromuscular activity. Result : Skeletal muscle fiber demonstrates a remarkable adaptability and can adjust its physiologic and contractile makeup in response to alterations in functional demands. This adaptive plasticity results from the ability of muscle fibers to adjust their molecular, functional, and contractile properties in response to altered physiological demands, such as changes in exercise patterns and mechanical loading. The process of activity-dependent plasticity in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of myosin heavy chain isoform. Conclusions : Knowledge of the mechanisms and interaction of activity-dependent adaptive pathways in skeletal muscle is important for our understanding of the synthesis of muscle myosin protein, maintenance of metabolic and functional capacity with physical activity, and therapeutic intervention for functional improvement.

  • PDF

Interleukin-32 in Inflammatory Autoimmune Diseases

  • Kim, Soohyun
    • IMMUNE NETWORK
    • /
    • 제14권3호
    • /
    • pp.123-127
    • /
    • 2014
  • Interleukin-32 (IL-32) is a cytokine inducing crucial inflammatory cytokines such as tumor necrosis factor-${\alpha}(TNF{\alpha})$ and IL-6 and its expression is elevated in various inflammatory autoimmune diseases, certain cancers, as well as viral infections. IL-32 gene was first cloned from activated T cells, however IL-32 expression was also found in other immune cells and non-immune cells. IL-32 gene was identified in most mammals except rodents. It is transcribed as multiple-spliced variants in the absence of a specific activity of each isoform. IL-32 has been studied mostly in clinical fields such as infection, autoimmune, cancer, vascular disease, and pulmonary diseases. It is difficult to investigate the precise role of IL-32 in vivo due to the absence of IL-32 gene in mouse. The lack of mouse IL-32 gene restricts in vivo studies and restrains further development of IL-32 research in clinical applications although IL-32 new cytokine getting a spotlight as an immune regulatory molecule processing important roles in autoimmune, infection, and cancer. In this review, we discuss the regulation and function of IL-32 in inflammatory bowel diseases and rheumatoid arthritis.

New Alternative Splicing Isoform and Identification of the Kinase Activity of N-Terminal Kinase-Like Protein (NTKL)

  • Merlin, Jayalal L.P.
    • 통합자연과학논문집
    • /
    • 제6권4호
    • /
    • pp.234-243
    • /
    • 2013
  • N-terminal kinase-like (NTKL) protein was initially identified as a protein binding to protein kinase B (PKB, also known as Akt). Though NTKL-BP1 (NTKL-binding protein 1) has been identified as an NTKL binding protein, its functions related to binding have not yet been elucidated. Here, a new alternative spliced variant of NTKL and its association with integrin ${\beta}1$ is described, in addition to the kinase activity of NTKL and its substrate candidates. Although the phosphorylation of the candidates must be further confirmed using other experimental methods, the observation that NTKL can phosphorylate ROCK1, DYRK3, and MST1 indicates that NTKL may act as a signaling protein to regulate actin assembly, cell migration, cell growth, and to facilitate differentiation and development in an integrin-associated manner.

Regulation of post-translational modification in breast cancer treatment

  • Heo, Kyung-Sun
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.113-118
    • /
    • 2019
  • The small ubiquitin-related modification molecule (SUMO), one of the post-translational modification molecules, is involved in a variety of cellular functions where it regulates protein activity and stability, transcription, and cell cycling. Modulation of protein SUMOylation or deSUMOylation modification has been associated with regulation of carcinogenesis in breast cancer. In the dynamic processes of SUMOylation and deSUMOylation in a variety of cancers, SUMO proteases (SENPs), reverse SUMOylation by isopeptidase activity and SENPs are mostly elevated, and are related to poor patient prognosis. Although underlying mechanisms have been suggested for how SENPs participate in breast cancer tumorigenesis, such as through regulation of target protein transactivation, cancer cell survival, cell cycle, or other post-translational modification-related machinery recruitment, the effect of SENP isoform-specific inhibitors on the progression of breast cancer have not been well evaluated. This review will introduce the functions of SENP1 and SENP2 and the underlying signaling pathways in breast cancer for use in discovery of new biomarkers for diagnosis or therapeutic targets for treatment.

Cadmium altered zinc homeostasis in the Neuronal Cell

  • Ahn, Sung-Hee;Jang, Bong-Ki;Park, Jong-An;Lee, Jong-Wha
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.185.1-185.1
    • /
    • 2003
  • In this study, we investigated the effect of cadmium on genes expression related to zinc homeostasis in HT22 hippocampal neuron cell line by RT -PCR and western blotting technics. In the time-course effect, cadmium up-regulated the relative levels of MT -I and MT -II to~b-actin at 4 hr after treatment. These effects were consistent with MT -I/II protein contents by western blot analysis. But MT -III, a specific MT isoform in brain, was not affected by cadmium. (omitted)

  • PDF

Requirement of PI3K-PKC$\varepsilon$ Signaling Pathway for Apicidin Induction of p$21^{WAFl/Cip1}$

  • Kim, Yong-Kee;Cho, Eun-Jung;Lee, Hoi-Young;Han, Jeung-Whan;Lee, Hyang-Woo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.144.1-144.1
    • /
    • 2003
  • We previously reported that the activation of p$21^{WAFl/Cip1}$ transcription by histone deacetylase inhibitor apicidin was mediated through Spl sites and pointed to the possible participation of protein kinase C (PKC). In this study, we investigated the role and identity of the specific isoforms of PKC involved and identified phosphatidylinositol 3-kinase (PI 3-kinase) as an upstream effector in HeLa cells. Using an isoform-specific pharmacological inhibitor of PKC, a PKC$\varepsilon$ dominant-negative mutant, and antisense oligonucleotide to inhibit PKC$\varepsilon$ specifically, (omitted)

  • PDF

Interleukin-32 Gamma as a New Face in Inflammatory Bone Diseases

  • Lee, Eun-Jin;Choi, Bongkun;Hwang, Eui-Seung;Chang, Eun-Ju
    • Journal of Rheumatic Diseases
    • /
    • 제24권1호
    • /
    • pp.14-20
    • /
    • 2017
  • Interleukin-32 (IL-32), a recently identified pro-inflammatory cytokine, is involved in the pathogenesis and progression of infections, cancer, chronic inflammation, and autoimmune disease. IL-32γ is the most active isoform in cell death and cell activation among nine distinct isoforms of IL-32. IL-32γ potentiates both osteogenic and osteoclastogenic capacities, and is critical in the coupling of bone resorption and bone formation for maintenance of bone homeostasis. IL-32γ is strongly associated with inflammatory bone disorders such as rheumatoid arthritis, ankylosing spondylitis, and osteoporosis. In this review, we summarize current research on the role of IL-32γ in inflammatory bone disorders, highlighting this cytokine as a novel target for prognostic marker and control of these diseases.

Spatiotemporal Patterns of Starch Deposition in Amaranth Grains (Amaranthus cruentus L.)

  • Young-Jun Park
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.173-173
    • /
    • 2022
  • In this study, we investigated whether there is another amaranth GBSS isoform in an attempt to characterize the synthesis of amylose in the pericarp. We used I2/KI staining to analyze the temporal and spatial starch accumulation patterns during seed development. The spatiotemporal starch accumulation patterns in developing seeds were observed by staining with I2/KI. Starch granules were observed in the pericarp in the initial developmental stage (3 DAP). A few starch granules were detected in the perisperm in the early-late developmental stage (8 DAP), during which the pericarp starch contents rapidly decreased. Starch granules were distributed throughout the perisperm in the mid-late developmental stage (15 DAP). Similar results were reported for other cereal crops, including barley, rice, and sorghum. Starch granules in the pericarp are synthesized during the early seed developmental stages but are absent in mature seeds. We recently reported that starch deposits in the perisperm of developing amaranth seeds are detectable only after the initial developmental stage. Prior to this stage, the pericarp is the major site of starch deposition. A recent study suggested that GBSSII isoforms are responsible for amylose synthesis in pericarps.

  • PDF

유료용 유채 유식물의 조직내 효소의 발현 패턴 (Expression Patterns of Enzymes in Different Tissues of Oil Seed Rape (Brassica napus L.) Seedling)

  • 송용수;서동준;이복례;정우진
    • Journal of Applied Biological Chemistry
    • /
    • 제52권2호
    • /
    • pp.51-57
    • /
    • 2009
  • 식물병의 생물학적 방제에 관련한 chitinase, ${\beta}$-1,3-glucanase, peroxidase의 발현 패턴을 살펴보기 위하여 3 품종(Capitol, Pollen 및 Saturnin)의 유로용 유채를 조사하였다. 유채 old leaf에서 병발생관련 단백질의 활성 중에서 chitinase의 경우 단백질 mg당 9.7${\sim}$11.8 unit, ${\beta}$-1,3-glucanase의 경우 단백질 mg당 11.1${\sim}$17.3 unit, peroxidase의 경우 단백질 mg당 0.6${\sim}$1.7 unit를 나타내었다. 유채 뿌리내 효소의 활성 중에서 chitinase의 경우 단백질 mg당 39.2${\sim}$49.0 unit, ${\beta}$-1,3-glucanase의 경우 단백질 mg당 49.9${\sim}$62.0 unit, peroxidase의 경우 단백질 mg당 2.4${\sim}$3.8 unIt를 나타내었다. Chitinase와 ${\beta}$-1,3-glucanase 활성은 Saturnin 잎과 Capitol 뿌리내에서 가장 높았고, 반면 Capitol 잎에서 가장 낮은 수준을 보였다. 또한, chitinase, ${\beta}$-1,3-glucanase 및 peroxidase 활성은 Saturnin 뿌리내에서 가장 낮은 수준을 보였다. Chitinase 동위효소가 잎(73, 51, 40, 34, 29 kDa)과 뿌리 (100, 57 34, 29 kDa)의 SDS-PAGE 겔 상에서 보였다. ${\beta}$-1,3-glucanase 동위효소가 잎과 뿌리 (75, 55 kDa)의 SDS-PAGE 겔 상에서 보였다. Peroxidase 활성염색은 Pollen의 잎과 뿌리내에서 가장 강하게 나타났다. Peroxidase 동위효소는 잎(122, 114, 93 kDa)과 뿌리(135, 122, 114, 93 kDa)의 Native-PAGE 겔 상에서 보였다. 이상의 결과로 볼 때 유채 조직내 효소 발현 패턴의 확립은 유채 생육기간 동안 식물병에 대한 저항성과 관련하여 중요한 자료가 될 것으로 사료된다.