• Title/Summary/Keyword: isoflavone aglycones

Search Result 57, Processing Time 0.028 seconds

Changes of Isoflavone Contents in White and Black Soybean Powders Prepared under Drying Conditions after Soaking (불림 후 건조 조건에서 서리태와 백태의 이소플라본 함량 변화)

  • Seung-Hyeon Cha;Ha-Young Song;Geum-Na Pyeon;Eun-Ah Hong;Se-Lim Bak;Sang-Beom Park;Shangle Jiang;Keum-Il Jang
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.2
    • /
    • pp.87-92
    • /
    • 2023
  • Isoflavones found in soybeans are present as glycosides and aglycones, which differ according to their chemical structure. The absorption rate and bioavailability of aglycones are greater than those of glycosides. It is known that aglycone isoflavones in soybean was converted from glycoside isoflavones by activating of endogenous β-glucosidase under drying (40~60℃) conditions after soaking. In this study, we compared and analyzed the proximate composition and isoflavone contents of soybean powders prepared under dried after soaking were analyzed. In the comparison of the proximate compositions, the moisture contents of white soybean powder dried after soaking (WSPDS) and black soybean powder dried after soaking (BSPDS) were decreased as compared with those of the control white soybean powder (CWSP) and control black soybean powder (CBSP). Whereas the contents of other proximate compositions were increased. The aglycone isoflavone contents were higher in WSPDS than in CWSP. Whereas the aglycone isoflavone contents of BSPDS had a similar content those of CBSP because of the component characteristics of black soybean. In conclusion, we believe that it is appropriate to identify and utilize the component characteristics of soybean varieties in order to induce an increase in the functional component content of soybeans under drying conditions after soaking.

Production of a High Value-Added Soybean Containing Bioactive Mevinolins and Isoflavones

  • Pyo, Young-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • The production of mevinolin, a potent hypocholesterolemic drug, and the bioconversion of isoflavones were investigated in soybeans fermented with Monascus pilosus KFRI-1140. The highest yields of 2.94 mg mevinolins and 1.13 mg isoflavone aglycones per g dry weight of soybean were obtained after 20 days of fermentation. Mevinolin was present in the fermentation substrate predominantly in the hydroxycarboxylate form (open lactone, 94.8$\sim$96.7%), which is currently being used as an hypocholesterolemic agent. The significant (p<0.01) bioconversion (96.6%) of the glucoside isoflavones (daidzin, glycitin, genistin) present in the soybean to the bioactive aglycones (daidzein, glycitein, genistein), with a 15.8-fold increase of aglycones was observed. The results suggest that Monascus-fermented soybean has potential as a novel medicinal food or multifunctional food supplement.

Analysis of Isoflavone Contents of Soybean By-products with Acid Hydrolysis Method (산 가수분해시 가열방법과 시간 및 추출조건에 따른 대두가공 부산물의 이소플라본 함량 변화)

  • Han, Jin-Suk;Hong, Hee-Do;Kim, Sung-Ran
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1420-1426
    • /
    • 2006
  • To establish a rapid and effective method for the analysis of soy isoflavone which is known to have lots of variation in derivatives of glucoside, conversion rate from isoflavone conjugates to its aglycones, and decomposition of conversed aglycones were investigated with various acid hydrolysis conditions. A number of heating conditions for acid hydrolysis including heating at convection oven $(105^{\circ}C)$, water bath $(95^{\circ}C)$, heating block $(120^{\circ}C)$, and hot plate $(120^{\circ}C)$ were applied. Acid hydrolysis in heating block with reflux was chosen as the best heating condition. From the stability test of isoflavone aglycone during acid hydrolysis, genistein, daidzein, and glycitein did not show any significant changes in their contents for 60 min of hydrolysis. Ten to thirty milligram of sample per 1 mL HCl was the best ratio of sample to acid. As conclusion, acid hydrolysis for 60 min after addition of 15 mL HCl solution to 0.5 g soybean, and then fill up to 50 mL with methanol, followed by HPLC analysis was set as a final analysis method. From this method, isoflavone contents expressed as total aglycone of feed meal was the highest with content of $1288.5{\mu}g/g$ followed by those of dehulled meal.

Assay of ${\beta}$-Glucosidase Activity of Bifidobacteria and the Hydrolysis of Isoflavone Glycosides by Bifidobacterium sp. Int-57 in Soymilk Fermentation

  • Jeon, Ki-Suk;Ji, Geun-Eog;Hwang, In-Kyeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.8-13
    • /
    • 2002
  • The isoflavone glycosides are hydrolyzed by ${\beta}$-glucosidase from gut microbes to the bioactive aglycones. However, the specific bacteria from the human intestinal tract that are involved in the metabolism of these compounds are not known. This study was undertaken to develop a fermented soymilk which converts isoflavones to the more bioactive aglycones form using a Bifidobacterium strain. The ${\beta}$-glucosidase activity of 15 Bifidobacterium strains were measured during cell growth. Among them, Bifidobacterium sp. Int-57 was selected for this study, because it has the highest ${\beta}$-glucosidase activity. Growth, acid development, ${\beta}$-glucosidase activity, and the hydrolysis of daidzin and genistin were investigated in four soymilks inoculated with Bifidobacterium sp. Int-57. After 12 h of fermentation, the counts of viable Bifidobacterium sp. Int-57 in all the soymilks reached a level of more than $10^8$ cfu/ml, which was then maintained. The pH of soymilks started to decrease rapidly after 6 h of fermentation and leveled off after 18 h. The titratable acidity of BL# 1 soymilk, BL#2 soymilk, and JP#l soymilk increased from 0.18 to 1.21, 1.15, and $1.08\%$ over the fermentation period, respectively. After 24 h of fermentation, the $\beta$-glucosidase activity in BL#1 soymilk, BL#2 soymilk, JP#l soymilk, and JP#2 soymilk increased to 59.528, 40.643, 70.844, and 56.962 mU/ml, respectively. The isoflavone glycosides, daidzin and genistin, in soymilks were hydrolyzed completely in the relatively short fermentation time of 18 h. These results show that Bifidobacterium sp. Int-57 can be used as a potential starter culture for developing fermented soymilk which has completely hydrolyzed isoflavone glycosides.

Quantification of Isoflavone Malonylglucosides in Soybean Seed during Germination (콩 발아 중 isoflavone malonylglucosides의 함량 변이)

  • Lee, Ju-Won;Yi, Yoo-Jung;Lee, Ju-Hee;Jo, Min-Sik;Choi, Do-Jin;Ma, Mu-Hyun;Kim, Hong-Sik;Kim, Dae-Ok;Yun, Hong-Tae;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.3
    • /
    • pp.239-247
    • /
    • 2018
  • Soybean produces three major types of isoflavones, daidzein, genistein, and glycitein aglycones and their glucosides and malonylglucosides. It has been known that malonylated glucosides are rapidly converted to their corresponding aglycones due to the unstable thermolabile glucoside malonates; therefore, the analytical study of malonylated glucosides has been insufficient. In this study, we analyzed the malonylglucoside content in soybean seeds. Isoflavone analysis of three soybean cultivars revealed that 81.5~90.0% of the total isoflavones were malonylglucosides, whereas aglycones were rarely detected. Moreover, the total isoflavone content increased during a 5-day germination period where growth regulators and coumaric acid treatments tended to yield higher isoflavone content than the normal germination treatment, however the differences were not significant; notably, the isoflavone accumulation trend continued with additional germination days. The content of malonylglucoside was higher than that of other isoflavones, which was 83.7~86.6% of the total isoflavone content in seeds with a 3-day germination period. Furthermore, isoflavones were significantly accumulated in the hypocotyl of seedlings with a 5-day germination period. The content of isoflavone in the hypocotyl of the Pungsannamul-kong was 10,240 ug/g when treated with coumaric acid, which was considerably higher than that of other cultivars and treatments. Additionally, soybean seeds heated at $60^{\circ}C$ for 1 hour produced higher isoflavone content than non-heated soybean seeds. Our results show that it is possible to increase the isoflavone content in soybean seeds through various treatments.

Isolation, Identification, and Characterization of Pichia guilliermondii K123-1 and Candida fermentati SI, Producing Isoflavone β-Glycosidase to Hydrolyze Isoflavone Glycoside Efficiently, from the Korean Traditional Soybean Paste

  • Kim, Won-Chan;So, Jai-Hyun;Kim, Sang-In;Shin, Jae-Ho;Song, Kyung-Sik;Yu, Choon-Bal;Kho, Yung-Hee;Rhee, In-Koo
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.163-169
    • /
    • 2009
  • A total of 155 microbial strains were isolated from the Korean traditional soybean paste based on their morphological features on the growth of agar plate. Among the isolated strains, a total of 28 strains were capable of hydrolyzing isoflavone glycoside to isoflavone aglycone efficiently in the soybean paste. Finally, two strains, K123-1 and SI, were selected because of their resistance to 15% NaCl and ability to convert isoflavone glycoside to isoflavone aglycone efficiently during the fermentation of soybean paste. The isolated strains K123-1 and SI were identified to be Pichia guilliermondii and Candida fermentati, respectively, using the partial 26S rDNA sequence analysis and phylogenic analysis. Pichia guilliermondii K123-1 and Candida fermentati SI converted daidzin to daidzein up to 96% and 95%, respectively, and genistin to genistein up to 92% when soybean pastes were fermented at $30^{\circ}C$ for 20 days with a single isolated strain. Pichia guilliermondii K123-1 and Candida fermentati SI were able to grow in the presence of 15% NaCl on both liquid medium and agar plate. We think that Pichia guilliermondii K123-1 and Candida fermentati SI might be one of good candidates for making functional soybean paste because they are isolated from the Korean traditional soybean paste and have a good ability to convert isoflavone glycosides to isoflavone aglycones and a high salt tolerance.

Antiinflammatory Activity of Flavonoids:Mouse Ear Edema Inhibition

  • Kim, Hee-Kee;Namgoong, Soon-Young;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 1993
  • In this inverstigation, the various flavonoid aglycones were evaluated for their inhibitory activities against croton-oil or arachidonic acid induced mouse ear edema by oral or topical administration. The compounds tested were thirteen derivatives of flavan-3-ol(catechin and epicatechin), flavanone (flavanone and naringenin), flavone (flavone, chrysin and apigenin), flavonol(favonol, galangin, quercetin and morin) and isoflavone (biochanin A and 2-carbethoxy-5,7-dihydroxy-4'-methoxyisoflavone), along with hydrocortisone, indomethacin, 4-bormophenacyl bromide, nordihydroguaiaretic acid and phenidone as positive controls. A(isoflavone) were found to show broad inhibitoty activities (14-52%) against croton-oil or arachidonic acid induced ear edema by oral or topical application at the dose of 2 mg/mouse, although they showed less activity than hydrocortisone (26-88%) or indomethacin (36-80%). Flavonoid agtlycones tested showed higher activity when aplied topically than by the oral administration. It was also found that they inhibited arachidonic acid induced edema more profoundly than croton-oil induced edema by topical application. In arachidonic acid induced edema when applied topically, flavone derivatives such as flavone, chrysin and apigenin were revealed to be the good inhibitory agents in addition to flavonols and isoflavones. When quercetin and biochanin. A were selected for evaluating in carrageenan induced rat pleurisy and biochanin both flavonoids showed antiinflammatory activity at the dose of 70 mg/kg by the oral adminis-tration. All of these results revealed that flavonoid aglycones, especially 5,7-dihydroxy-flavonols having hydroxyl group(s) in B-ring and biochanin A (isoflavone) possessed in vivo antiinflammatory activity.

  • PDF

Changes of Isoflavone Distribution in Soybeans Using Almond Powder (아몬드 첨가에 의한 대두의 이소플라본 특성 변화 연구)

  • Yang, Seung-Ok;Chang, Pahn-Shick;Baek, Bong-Kwon;Hong, Sung-Dae;Lee, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.231-236
    • /
    • 2007
  • The isoflavone distributions of soy samples treated with soaking, oven-drying, and almond additions were determined by high performance liquid chromatography (HPLC). Oven-drying was performed to increase the amount of ${\beta}-glucoside$ isoflavones, and almonds were added to convert the ${\beta}-glucosides$ into their corresponding aglycones. Oven-drying at $100^{\circ}C$ for 4 hr significantly increased ${\beta}-glucoside$ levels and decreased $malonyl-{\beta}-glucosides$, while almond additions of 2.5% and 5.0% (w/w) significantly increased aglycone contents (p<0.05) for samples with 12 hr of drying. The rate of increase for genistein from genistin was faster than that of daidzein from daidzin with almond additions. The ${\beta}-glucosidase$ activity in the 5.0% added almond soybean samples was significantly higher than in the samples without added almond (p<0.05). The aglycone content increased from 1.62% in the raw soybeans to 61.55% in the 2.5% added almond soybean samples for 12 hr of incubation. The information from this study could be used to increase the isoflavone aglycone contents of soybeans by using natural products such as almonds, without organic solvent additions or microorganism fermentation.

Composition of Isoflavone, Phytic Acid, and Saponins in Hypocotyls and Cotyledons of Six Traditional Korean Soybeans

  • Kim, Kang-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.195-201
    • /
    • 2007
  • The objective of present study was to examine the composition of functional components (isoflavones, phytic acid, and saponin) in hypocotyls and cotyledons of six traditional Korean soybeans, namely Cheongtae, Seoritae, Jinjoori, Subaktae, Yutae, and Huktae. Three 'family' of isoflavones, as four chemical structures were present in hypocotyls and cotyledons of six soybean cultivars: the aglycones genistein, daidzein, and glycitein; the glycosides genistin, daidzin, and glycitin; the acetylglycosides 6"-O-acetylgenistin, 6"-O-acetyldaidzin, and 6"-O-acetylglycitin; and the malonylglycosides 6"-O-malonylgenistin, 6"-O-malonyldaidzin, and 6"-O-malonylglycitin. Isoflavone contents of hypocotyls and cotyledons differed among the cultivars, and glucosides and malonylglucosides accounted for more than 90% of the total phytoestrogens, with the remaining $1\sim7%$ taken up by aglycones. Concentrations of isoflavones in cotyledons were approximately about $10\sim20%$ of respective hypocotyls. Contents of phytic acids in hypocotyls and cotyledons of the selected soybean cultivars were $1.21\sim1.70%$ and $2.59\sim3.01%$, respectively. Hypocotyls of Seoritae showed the lowest content of phytic acid with 1.21%, while cotyledons of Cheongtae showed the highest content with 3.01%. The sapogenol concentrations ranged from $13.58mg/100g\sim20.82mg/100g$ for hypocotyls and $0.95mg/100g\sim2.55mg/100g$ for cotyledons showing that concentrations of saponin are $7\sim10$ times higher in hypocotyls than in cotyledons of respective soybeans. For both hypocotyls and cotyledons the sapogenol A were present in higher concentrations than soyasapogenol B.

Comparison of γ-aminobutyric acid and isoflavone aglycone contents, to radical scavenging activities of high-protein soybean sprouting by lactic acid fermentation with Lactobacillus brevis (발아 고단백 콩의 Lactobacillus brevis 젖산발효에 의한 가바와 이소플라본 함량 및 라디칼 소거활성의 비교)

  • Hwang, Chung Eun;Haque, Md. Azizul;Lee, Jin Hwan;Joo, Ok Soo;Kim, Su Cheol;Lee, Hee Yul;Um, Bong Sik;Park, Kyung Sook;Cho, Kye Man
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.7-18
    • /
    • 2018
  • In this study, soy-powder yogurt (SPY) with enhanced levels of ${\gamma}$-aminobutyric acid (GABA) and isoflavone aglycone was produced from sprouting high-protein soybeans (HPSs). The fermented steam-HPS sprouts (0 to 4 cm) were fermented (72 h) with Lactobacillus brevis, and the total free amino acids (FAAs) of the formed mixtures were determined to be 79.53, 489.93, 877.55, 780.53, and 979.97 mg/100 mL in the fermented HPS (FHPS), and the fermented steam-HPS with 0 cm (FSHPS-0), 1 cm (FSHPS-1), 2 cm (FSHPS-2), and 4 cm sprouting lengths (FSHPS-4), respectively. The levels of glutamic acid (GA) and GABA were observed to be the highest, 100.31 and 101.60 mg/100 mL, respectively, in the unfermented HPS (UFSHPS-1, 1 cm) and FSHPS-1 sprouts, respectively. Moreover, the total contents of the isoflavone glycoside form decreased proportionally to the increasing total levels of isoflavone aglycones after fermentation in FSHPS-0, FSHPS-1, FSHPS-2, and FSHPS-4. The levels of isoflavone aglycones were detected as 350.34, 289.15, 361.61, 445.05, and $491.25{\mu}g/g$ in FHPS, FSHPS-0, FSHPS-1, FSHPS-2, and FSHPS-4, respectively. While FSHPS-1 exhibited the highest DPPH (63.28%) and ABTS (73.28%) radical scavenging activities, FSHPS-4 contained the highest isoflavone aglycone ratio (81.63%). All in all, the FSHPS-1 mixture prepared in this study exhibited high GABA content and functional prosperity, thereby making it suitable for potential applications in the soy-dairy industry.