• Title/Summary/Keyword: isoconversional analysis

Search Result 10, Processing Time 0.026 seconds

Estimation of Activation Energy for the Free Radical Polymerization by Using Isoconversional Analysis (등전환 분석(Isoconversional Analysis)를 이용한 자유라디칼 중합의 활성화 에너지 계산)

  • Chung, I.
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.281-285
    • /
    • 2004
  • In this paper, the simple way to evaluate the value of the activation energy for the overall rate of free radical polymerization by using DSC thermograms was studied using free radical polymerization or butylacrylate as a model. Activation ehergies were determined at heating rates of 1, 2, 5, and $10^{\circ}C/min$ by applying the multiple scanning-rate methods of Kissinger, Osawa, and half-width methods as well as the single rate method of Barrett. The value of the overall activation energy measured was closely matched with the values calculated from individual data. This work also demonstrated that the use of the isoconversional method was a simple and effective way to estimate the activation energy for the overall free radical polymerization.

Kinetics of Anhydride Curing of Epoxy : Effect of Chain Length of Anhydride (에폭시 무수화물 경화의 동력학적 연구: 무수화물의 사슬 길이 효과)

  • Chung, I.;Lee, J.
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.3-11
    • /
    • 2005
  • The ruling kinetics of epoxy resins with 3 different kinds or alkenylsuccinic anhydride (ASA) having C-8, C-12, and C-16 pendant side chain length with two different catalysts was studied by using differential scanning calorimetry (DSC). Nonisothermal and isoconversional method has been used for characterizing the effect of the pendant side chain length in the curing process. Results or nonisothermal method showed that there was no significant difference in the effect of the pendant side chain length of ASA. But isoconversional analysis showed that the value of the activation energy for the initiation reaction or C-8, C-12, and C-16 were $61.7{\sim}57.7kJ/mol$, $63.0{\sim}57.3 kJ/mol$, and $130.4{\sim}94.2 kJ/mol$, respectively, depending on the catalyst used. The values of activation energy for the initiation is different as reported value of 20 kJ/mol which indicating the difference in the effect of the pendant side chain length of ASA in the initial stage of the reaction.

Kinetics analysis of energetic material using isothermal DSC (등온 DSC를 이용한 고에너지 물질의 정밀 반응 모델 기법 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.219-222
    • /
    • 2015
  • The kinetic analysis of energetic materials using Differential Scanning Calorimetry (DSC) is proposed. Friedman Isoconversional method is applied to DSC experiment data and AKTS software is used for analysis. The frequency factor and activation energy are extracted as a function of product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the response of energetic materials; instead, multiple set of Arrhenius factors are used in describing a single global step. The proposed kinetic scheme has considerable advantage over the standard method based on One-Dimenaionl Time to Explosion (ODTX). Reaction rate and product mass fraction simulation are conducted to validate extracted kinetic scheme. Also a slow cook-off simulation is implemented for validating the applicability of the extracted kinetics scheme to a practical thermal experiment.

  • PDF

Thermal Degradation Analyses of Epoxy-Silica Nano Composites (에폭시-실리카 나노 복합소재의 열화 특성 및 거동 분석)

  • Jang, Seo-Hyun;Han, Yusu;Hwang, Do Soon;Jung, Joo Won;Kim, Yeong K.
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.268-274
    • /
    • 2020
  • This paper analyzed the degradation behaviors of silica nano epoxy composite based on the isoconversional method. The size of the silica nano particle was about 12 nm and the particles were mixed by three different weight ratios to make the degradation test samples. The thermogravimetric analyses were performed under six different temperature increase rates to measure the weight changes. Four different methods, Friedman, Flynn-Wall-Ozawa, Kissinger and DAEM (Distributed Activation Energy Method), were employed to calculate the activation energies depending on the conversion ratios, and their calculation results were compared. The results represented that the activation energy was increased when the silica nano particles were mixed up to 10%, indicating the definite contribution of the particles to the degradation behavior enhancements. However, the enhancement was not proportional to the particle mixture ratio by demonstrating the similar activation energies between 10% and 18% samples. The calculation results by the different methods were also compared and discussed.

An Extraction of Detailed Isoconversional Kinetic Scheme of Energetic Materials using Isothermal DSC (등전환법과 등온 DSC를 이용한 고에너지 물질의 정밀 반응모델 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.46-55
    • /
    • 2016
  • The kinetic analysis of a heavily aluminized cyclotrimethylene-trinitramine(RDX) is conducted using differential scanning calorimetry(DSC), and the Friedman isoconversional method is applied to the DSC experimental data. The pre-exponential factor and activation energy are extracted as a function of the product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the complex response of energetic materials; instead, a set of multiple Arrhenius factors is constructed based on the local progress of the exothermic reaction. The resulting reaction kinetic scheme is applied to two thermal decomposition tests for validating the reactive flow response of a heavily aluminized RDX. The results support applicability of the present model to practical thermal explosion systems.

Kinetic Analysis of Energetic Materials Using Differential Scanning Calorimetry (DSC를 이용한 고에너지 물질의 반응속도식 추출과 활용)

  • Kim, Yoocheon;Park, Jungsoo;Yang, Seungho;Park, Honglae;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • The kinetic analysis of energetic materials using Differential Scanning Calorimetry (DSC) is proposed. Friedman Isoconversional method is applied to DSC experiment data and AKTS software is used for analysis. The proposed kinetic scheme has considerable advantage over the standard method based on One-Dimenaionl Time to Explosion (ODTX). Reaction rate and product mass fraction simulation are conducted to validate extracted kinetic scheme. Also a slow cook-off simulation is implemented on $B/KNO_3$ for validating the applicability of the extracted kinetics scheme to a practical thermal experiment.

A Study on Transformation of Dynamic DSC Results into Isothermal Data for the Formation Kinetics of a PU Elastomer

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.52-56
    • /
    • 2018
  • The present study examines the transformation of dynamic DSC data into the equivalent isothermal data for the formation kinetics of a polyurethane elastomer. The reaction of 2'-dichloro-4,4'-methylenedianiline (MOCA) with a PTMG/TDI-based isocyanate prepolymer was evaluated. DSC measurement was performed in the dynamic scanning mode with several different heating rates to obtain the reaction thermograms. Then, the data was transformed into the isothermal data through a procedure based on Ozawa analysis. The main feature of this procedure was the transformation of $({\alpha}-T)_{\beta}$ curves from dynamic DSC into $({\alpha}-t)_T$ curves using the isoconversional $(t-T)_{\alpha}$ diagram. Validity was discussed for the relationship between the dynamic DSC data and the transformed isothermal results.

Characterization of energetic meterials using thermal calorimetry (등전환 방법을 이용한 고에너지 물질의 노화 효과 예측)

  • Kim, Yoocheon;Oh, Juyoung;Ambekar, Aniruda;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.547-553
    • /
    • 2017
  • Thermal analysis of three energetic materials used in pyroelectric device was performed using Differential Scanning Calorimetry (DSC). The theoretical method for extracting the reaction rate equation of energetic materials using DSC experimental data is proposed and the reaction rate extraction is performed. The results of the DSC were analyzed by the conversion method such as Friedman. Activation energy and frequency factor according to mass fraction were extracted to complete the reaction rate equation. The extracted reaction rate equation has a form that represents the entire chemical reaction process, not the assumption that the chemical reaction process of the high energy material is a main step in several stages. It has considerable advantages in terms of theoretical and accuracy as compared with the chemical reaction rate form extracted through conventional thermal analysis experiments. Using the derived reaction rate equation, we predicted the performance change of three energetic materials operating on actual storage condition over 20 years.

  • PDF

The Analysis on the Effects of Hygrothermal Aging to THPP Using DSC and XPS (DSC와 XPS를 통한 수분노화가 THPP 점화제에 미치는 영향 분석)

  • Oh, Juyoung;Kim, Yoocheon;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.79-92
    • /
    • 2019
  • Titanium hydride potassium perchlorate (THPP) is one of the commonly utilized pyrotechnic materials in aerospace industries. The current study elucidates the effects of hygrothermal aging on the combustion of THPP experimentally. First, applying the Differential Scanning Calorimetry (DSC) and isocoversional method, both the delay of reaction start and decrease in maximum reaction rate were observed. The kinetics parameters tended to fluctuate depending the thermal reaction or intermediate product formation of THPP. Also, the oxidants decomposition and fuel oxidation phenomenon were discovered by X-ray photoelectron spectroscopy (XPS). The experimental heat from DSC data were verified as reasonable by comparing with the theoretical heat obtained utilizing both THPP formulation from XPS and NASA Chemical Equilibrium with Applications (CEA). Both data had identical variation trend, which expecially had the highest heat value at 10 weeks aged sample.

Preparation of Cr2O3/AP Composites and their Thermal Decomposition Characteristics (Cr2O3/AP 복합체 제조 및 그 열분해 특성)

  • Jung, Jae-Yun;Kim, Jae-Kyeong;Shim, Hong-Min;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.145-153
    • /
    • 2015
  • $Cr_2O_3/AP$ (ammonium perchlorate) energetic composites were prepared by a method of solvent/anti-solvent. XRD analysis revealed that the crystalline structure of AP in $Cr_2O_3/AP$ composites is the same as that of pure AP. SEM photomicrograph shows that an average size of cuboid $Cr_2O_3/AP$ composites is approximately $2.5{\mu}m$. TGA analysis shows that the addition of submicron $Cr_2O_3$ particles into AP lowers the HTD (high-temperature decomposition) compared to that of neat AP and the activation energy of the $Cr_2O_3/AP$ composites was calculated by the isoconversional Starlink method. Considering changes in the activation energy, the decomposition reaction mechanism of AP was suggested as follows; the decomposition with the formation of nucleation sites renders formation of porous structure in the composites up to conversion of about 0.25 and after further conversion of over 0.3, it seems that decomposition reaction vigorously takes place rather than sublimation of AP.