• Title/Summary/Keyword: isocenter

Search Result 132, Processing Time 0.031 seconds

Examination of Dose Change at the Junction at the Time of Treatment Using Multi-Isocenter Volumetric Modulated Arc Therapy (용적조절호형방사선치료(VMAT)의 다중치료중심(Multi- Isocenter)을 이용한 치료 시, 접합부(Junction)의 선량 변화에 대한 고찰)

  • Jung, Dong Min;Park, Kwang Soon;Ahn, Hyuk Jin;Choi, Yoon Won;Park, Byul Nim;Kwon, Yong Jae;Moon, Sung Gong;Lee, Jong Oon;Jeong, Tae Sik;Park, Ryeong Hwang;Kim, Se young;Kim, Mi Jung;Baek, Jong Geol;Cho, Jeong Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.9-14
    • /
    • 2021
  • This study examined dose change depending on the reposition error of the junction at the time of treatment with multi-isocenter volumetric modulated arc therapy. This study selected a random treatment region in the Arccheck Phantom and established the treatment plan for multi-isocenter volumetric modulated arc therapy. Then, after setting the error of the junction at 0 ~ 4 mm in the X (left), Y (upper), and Z (inner and outer) directions, the area was irradiated using a linear accelerator; the point doses and gamma indexes obtained through the Phantom were subsequently analyzed. It was found that when errors of 2 and 4 mm took place in the X and Y directions, the gamma pass rates (point doses) were 99.3% (2.085) and 98% (2.079 Gy) in the former direction and 98.5% (2.088) and 95.5% (2.093 Gy) in the latter direction, respectively. In addition, when errors of 1, 2, and 4 mm occurred in the inner and outer parts of the Z direction, the gamma pass rates (point doses) were found to be 94.8% (2.131), 82.6% (2.164), and 72.8% (2.22 Gy) in the former part and 93.4% (2.069), 90.6% (2.047), and 79.7% (1.962 Gy) in the latter part, respectively. In the X and Y directions, errors up to 4 mm were tolerable; however, in the Z direction, error values exceeding 1 mm were beyond the tolerance level. This suggests that for high and low dose areas, errors in the direction same as the progress direction in the treatment region have a more sensitive dose distribution. If the guidelines for set-up errors are established at the institutional level through continuous research in the future, it will be possible to provide good quality treatment using junctions.

Arm-up holder의 보조기구 제작에 따른 유용성 평가

  • 이현직;최병기;심재구;김종식;오동균;박영환
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.85-88
    • /
    • 2002
  • I. 목적 : arm-up holder는 흉부 및 복부 질환 치료의 환자고정에 유용하게 사용하고 있으나 손잡이 부분과 어깨가 닿는 부분까지 거리 때문에 동일한 자세를 유지하는데 불편함이 있다. 특히 긴장을 많이 하거나 기력이 없는 환자는 방사선 치료 시 자세의 불안정으로 인하여 치료의 정확성이 떨어질 수 있다. 이에 본원에서는 현재 사용하고 있는 arm-up holder에 팔의 지지를 위한 보조기구를 제작하여 유용성을 평가하였다. II. 대상 및 방법 : 기존의 arm-up holder에 어깨받침대를 부착하여 개선된 arm-up holder를 제작하였다. 실험을 위하여 기존의 arm-up holder를 사용하는 환자그룹과 개선된 arm-up holder를 사용하는 그룹으로 구분하여 자세 변화를 평가하였다. 두 그룹의 환자를 대상으로 모의 치료를 실시한 후 치료실에서 L-gram 을 2회 씩 촬영하여 치료하고자 하는 portal film과 isocenter의 변화를 측정했다. 각 그룹 당 10명씩의 환자를 선정하여 반복 조사하였다. III. 결과 : 개선된 arm-up holder를 사용한 그룹의 isocenter 의 변화는 최대 2mm, 최소 0.5mm 평균 1.2mm 이다. 기존의 arm-up folder를 사용한 그룹과 비교하여 평균변화는 약 2배로 나라났고, 최대 변화는 2.5배의 오차범위가 측정되었다. IV. 결론 : 현재 사용하고 있는 arm-up holder는 흉부 및 복부의 사방향 방사선 치료 시 팔에 의한 방사선 감약을 예방할 수 있는 유용한 고정용구이다. 하지만 팔을 올리고 있는 자세는 환자에게 불편함을 야기 시키며 이로 인한 치료의 정확성을 감소시킬 수 있다. 따라서, 기존의 arm-up holder에 보조기구를 제작하여 사용함으로써 환자의 불편함을 개선하고, set-up 의 안정성과 재현성을 향상시킬 수 있었다.

  • PDF

Investigating the effects of a range shifter on skin dose in proton therapy

  • Ming Wang;Lei Zhang;Jinxing Zheng;Guodong Li;Wei Dai;Lang Dong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.215-221
    • /
    • 2023
  • Proton treatment may deliver a larger dose to a patient's skin than traditional photon therapy, especially when a range shifter (RS) is inserted in the beam path. This study investigated the effects of an RS on skin dose while considering RS with different thicknesses, airgaps and materials. First, the physical model of the scanning nozzle with RS was established in the TOol for PArticle Simulation (TOPAS) code, and the effects of the RS on the skin dose were studied. Second, the variations in the skin dose and isocenter beam size were examined by reducing the air gap. Finally, the effects of different RS materials, such as polymethylmethacrylate (PMMA), Lexan, polyethylene and polystyrene, on the skin dose were analysed. The results demonstrated that the current RS design had a negligible effect on the skin dose, whereas the RS significantly impacted the isocenter beam size. The skin dose was increased considerably when the RS was placed close to the phantom. Moreover, the magnitude of the increase was related to the thickness of the inserted RS. Meanwhile, the results also revealed that the secondary proton primarily contributed to the increased skin dose.

Commissioning Experience of Tri-Cobalt-60 MRI-guided Radiation Therapy System (자기공명영상유도 Co-60 기반 방사선치료기기의 커미셔닝 경험)

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.193-200
    • /
    • 2015
  • The aim of this study is to present commissioning results of the ViewRay system. We verified safety functions of the ViewRay system. For imaging system, we acquired signal to noise ratio (SNR) and image uniformity. In addition, we checked spatial integrity of the image. Couch movement accuracy and coincidence of isocenters (radiation therapy system, imaging system and virtual isocneter) was verified. Accuracy of MLC positioing was checked. We performed reference dosimetry according to American Association of Physicists in Medicine (AAPM) Task Group 51 (TG-51) in water phantom for head 1 and 3. The deviations between measurements and calculation of percent depth dose (PDD) and output factor were evaluated. Finally, we performed gamma evaluations with a total of 8 IMRT plans as an end-to-end (E2E) test of the system. Every safety system of ViewRay operated properly. The values of SNR and Uniformity met the tolerance level. Every point within 10 cm and 17.5 cm radii about the isocenter showed deviations less than 1 mm and 2 mm, respectively. The average couch movement errors in transverse (x), longitudinal (y) and vertical (z) directions were 0.2 mm, 0.1 mm and 0.2 mm, respectively. The deviations between radiation isocenter and virtual isocenter in x, y and z directions were 0 mm, 0 mm and 0.3 mm, respectively. Those between virtual isocenter and imaging isocenter were 0.6 mm, 0.5 mm and 0.2 mm, respectively. The average MLC positioning errors were less than 0.6 mm. The deviations of output, PDDs between mesured vs. BJR supplement 25, PDDs between measured and calculated and output factors of each head were less than 0.5%, 1%, 1% and 2%, respectively. For E2E test, average gamma passing rate with 3%/3 mm criterion was $99.9%{\pm}0.1%$.

Dosimetric Verification of Dynamic Conformal Arc Radiotherapy (입체조형 동적회전조사 방사선치료의 선량 검증)

  • Kim Tae Hyun;Shin Dong Ho;Lee Doo Hyun;Park Sung Yong;Yun Myung Guen;Shin Kyung Hwan;Py Hong Ryull;Kim Joo-Young;Kim Dae Yong;Cho Kwan Ho;Yang Dae-Sik;Kim Chul-Yong
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.166-175
    • /
    • 2005
  • The purpose of this study is to develop the optimization method for adjusting the film isocenter shift and to suggest the quantitative acceptable criteria for film dosimetry after optimization In the dynamic conformal arc radiation therapy (DCAR). The DCAR planning was peformed In 7 patients with brain metastasis. Both absolute dosimetry with ion chamber and relative film dosimetry were peformed throughout the DCAR using BrainLab's micro-multileaf collimator. An optimization method for obtaining the global minimum was used to adjust for the error in the film isocenter shift, which is the largest pan of systemic errors. The mean of point dose difference between measured value using ion chamber and calculated value acquired from planning system was $0.51{\pm}0.43\%$ and maximum was $1.14\%$ with absolute dosimetry These results were within the AAPM criteria of below $5\%$. The translation values of film isocenter shift with optimization were within ${\pm}$1 mm in all patients. The mean of average dose difference before and after optimization was $1.70{\pm}0.35\%$ and $1.34{\pm}0.20\%$, respectively, and the mean ratios over $5\%$ dose difference was $4.54{\pm}3.94\%$ and $0.11{\pm}0.12\%$, respectively. After optimization, the dose differences decreased dramatically and a ratio over $5\%$ dose difference and average dose difference was less than $2\%$. This optimization method is effective in adjusting the error of the film isocenter shift, which Is the largest part of systemic errors, and the results of this research suggested the quantitative acceptable criteria could be accurate and useful in clinical application of dosimetric verification using film dosimetry as follows; film isocenter shift with optimization should be within ${\pm}$1 mm, and a ratio over $5\%$ dose difference and average dose difference were less than $2\%$.

  • PDF

Development of Independent Target Approximation by Auto-computation of 3-D Distribution Units for Stereotactic Radiosurgery (정위적 방사선 수술시 3차원적 공간상 단위분포들의 자동계산법에 의한 간접적 병소 근사화 방법의 개발)

  • Choi Kyoung Sik;Oh Seung Jong;Lee Jeong Woo;Kim Jeung Kee;Suh Tae Suk;Choe Bo Young;Kim Moon Chan;Chung Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • The stereotactic radiosurgery (SRS) describes a method of delivering a high dose of radiation to a small tar-get volume in the brain, generally in a single fraction, while the dose delivered to the surrounding normal tissue should be minimized. To perform automatic plan of the SRS, a new method of multi-isocenter/shot linear accelerator (linac) and gamma knife (GK) radiosurgery treatment plan was developed, based on a physical lattice structure in target. The optimal radiosurgical plan had been constructed by many beam parameters in a linear accelerator or gamma knife-based radiation therapy. In this work, an isocenter/shot was modeled as a sphere, which is equal to the circular collimator/helmet hole size because the dimension of the 50% isodose level in the dose profile is similar to its size. In a computer-aided system, it accomplished first an automatic arrangement of multi-isocenter/shot considering two parameters such as positions and collimator/helmet sizes for each isocenter/shot. Simultaneously, an irregularly shaped target was approximated by cubic structures through computation of voxel units. The treatment planning method by the technique was evaluated as a dose distribution by dose volume histograms, dose conformity, and dose homogeneity to targets. For irregularly shaped targets, the new method performed optimal multi-isocenter packing, and it only took a few seconds in a computer-aided system. The targets were included in a more than 50% isodose curve. The dose conformity was ordinarily acceptable levels and the dose homogeneity was always less than 2.0, satisfying for various targets referred to Radiation Therapy Oncology Group (RTOG) SRS criteria. In conclusion, this approach by physical lattice structure could be a useful radiosurgical plan without restrictions in the various tumor shapes and the different modality techniques such as linac and GK for SRS.

  • PDF

Customer Acceptance Procedure for Clinac (21EX-Platinum)

  • Hong, Dong-Ki;Lee, Woo-Seok;Kwon, Kyung-Tae;Park, Kwang-Ho;Kim, Chung-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.43-61
    • /
    • 2004
  • Purpose : For qualify improvement in radiotherapy, it is important to set up and evaluate equipment (linac) accurately. In addition, technicians are needed to be fully aware of the equipment's detailed quality and its manual. Therefore, the result of ATP is evaluated and introduced, in order that the technicians are skilled by participating in quality assurance (QA) and understanding the quality of the equipment before clinical use. Method and Material : QA for LINAC 21EX (Varian, US) was done with suppliers its procedure was divided into radiation survey, mechanical test, radiation isocenter test, bean performance, dosimetry, and enhanced dynamic wedge and using X-omat film (Kodak), multidata, densitometer, and electrometer. QA of MLC (Millennium, 120 leaf) attached to LINAC and EPID (Portal vision) were done separately. Result : The leakage dose by survey meter was below the tolerance. In mechanical test, collimater, gantry, and couch rotation were less than 1mm, and the angles were ${\pm}0.1^{\circ}$ for digital and ${\pm}0.5^{\circ}$ for mechanical. The alignment test of the light field and crosshair were evaluated less than 1mm. The (a)symmetrical jaw field was less than ${\pm}0.5mm$. The radiation isocenter test using X-mat film was less than 1mm. The consistency of light field and radiation field was less than ${\pm}0.1mm$. PDD for photon energy was less than ${\pm}1\%$ and for electron energy of $90\%,\;80\%,\;50\%,\;and\;30\%$ were evaluated within the tolerance. Flatness for photon and electron energy was evaluated $2.3\%$ (tolerance $3\%$) and $3\%$ (tolerance $4.5\%$), respectively, and symmetry was $0.45\%$ (tolerance $2\%$) and $0.3\%$ (tolerance $2\%$), respectively. Dosimetry test for short term, MU setting, rep rate, and dose rate accuracy of photon and electron energy was within the tolerance depending on energy, MU, and gantry angle. Conclusion : Accuracy and safety for clinical use of Clinac 21EX was verified through customer acceptance procedure and the quality of the equipment was found out. These can reduce the difficulties in using the equipment. Furthermore, it is useful for clinically treatment of patients by technicians' active participations.

  • PDF

A study on the effect of collimator angle on PAN-Pelvis volumetric modulated arc therapy (VMAT) including junction (접합부를 포함한 PAN-전골반암 VMAT 치료 계획 시 콜리메이터 각도의 영향에 관한 고찰)

  • Kim, Hyeon Yeong;Chang, Nam Jun;Jung, Hae Youn;Jeong, Yun Ju;Won, Hui Su;Seok, Jin Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.61-71
    • /
    • 2020
  • Purpose: To investigate the effect of collimator angle on plan quality of PAN-Pelvis Multi-isocenter VMAT plan, dose reproducibility at the junction and impact on set-up error at the junction. Material and method: 10 adult patients with whole pelvis cancer including PAN were selected for the study. Using Trubeam STx equipped with HD MLC, we changed the collimator angle to 20°, 30°, and 45° except 10° which was the default collimator angle in the Eclipse(version 13.7) and all other treatment conditions were set to be the same for each patient and four plans were established also. To evaluate these plans, PTV coverage, coverage index(CVI) and homogeneity index (HI) were compared and clinical indicators for each treatment sites in normal tissues were analyzed. To evaluate dose reproducibility at the junction, the absolute dose was measured using a Falmer type ionization chamber and dose changes at the junction were evaluated by moving the position of the isocenter in and out 1~3mm and setting up the virtual volume at the junction. Result: CVI mean value was PTV-45 0.985±0.004, PTV-55 0.998±0.003 at 45° and HI mean value was PTV-45 1.140±0.074, and PTV-55 1.031±0.074 at 45° which were closest to 1. V20Gy of the kidneys decreased by 9.66% and average dose of bladder and V30 decreased by 1.88% and 2.16% at 45° compared to 10° for the critical organs. The dose value at the junction of the plan and the actual measured were within 0.3% and within tolerance. At the junction, due to set-up error the maximum dose increased to 14.56%, 9.88%, 8.03%, and 7.05%, at 10°, 20°, 30°, 45°, and the minimum dose decreased to 13.18%, 10.91%, 8.42%, and 4.53%, at 10°, 20°, 30°, 45° Conclusion: In terms of CVI, HI of PTV and critical organ protection, overall improved values were shown as the collimator angle increased. The impact on set-up error at the junction by collimator angle decreased as the angle increased and it will help improve the anxiety about the set up error. In conclusion, the collimator angle should be recognized as a factor that can affect the quality of the multi-isocenter VMAT plan and the dose at the junction, and be careful in setting the collimator angle in the treatment plan.

The Impact of Tissue Inhomogeneity Corrections in the Treatment of Prostate Cancer with Intensity-Modulated Radiation Therapy (전립선암의 세기조절 방사선 치료시 밀도보정의 효과)

  • Han Youngyih;Park Won;Huh Seung Jae
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • Purpose: To investigate the effects of tissue inhomogeneity corrections on the dose delivered to prostate cancer patients treated with Intensity-Modulated Radiation Therapy (IMRT). Methods and Materials: For five prostate cancer patients, IMRT treatment plans were generated using 6 MV or 10 MV X-rays. In each plan, seven equally spaced ports of photon beams were directed to the isocenter, neglecting the tissue heterogeneity in the body. The dose at the isocenter, mean dose, maximum dose, minimum dose and volume that received more than 95% of the isocenter dose in the planning target volume ( $V_{p>95%}$) were measured. The maximum doses to the rectum and the bladder, and the volumes that received more than 50, 75 and 90% of the prescribed dose were measured. Treatment plans were then recomputed using tissue inhomogeneity correction maintaining the intensity profiles and monitor units of each port. The prescription point dose and other dosimetric parameters were remeasured. Results: The inhomogeneity correction reduced the prescription point dose by an average 4.9 and 4.0% with 6 and 10 MV X-rays, respectively. The average reductions of the $V_{p>95%}$ were 0.8 and 0.9% with the 6 and 10 MV X-rays, respectively. The mean doses in the PTV were reduced by an average of 4.2 and 3.4% with the 6 and 10 MV X-rays, respectively. The irradiated volume parameters in the rectum and bladder were less decreased; less than 2.1 % (1.2%) of the reduction in the rectum (bladder). The average reductions in the mean dose were 1.0 and 0.5% in the rectum and bladder, respectively. Conclusions: Neglect of tissue inhomogeneity in the IMRT treatment of prostate cancer gives rise to a notable overestimation of the dose delivered to the target, whereas the impact of tissue inhomogeneity correction to the surrounding critical organs is less significant.

  • PDF

Dose Distributions for Ll NAC Radiosurgery with Dynamically Shaping Fields (선형가속기를 이용한 방사선 수술시 Dynamical Field Shaping에 의한 선량분포)

  • Suh Tae Suk;Yoon Sei Chul;Kim Moon Chan;Jang Hong Seok;PArk Yong Whee;Shinn Kyung Sub;Park Charn Il;Ha Sung Whan;Kang Wee Saing
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.431-437
    • /
    • 1993
  • An important problem in radiosurgery is the utilization of the proper beam parameters, to which dose shape is sensitive. Streotactic radiosurgery techniques for a linear accelerator typically, use circular radiation fields with multiple arcs to produce an spherical radiation distribution. Target volumes are irregular in shape for a certain case, and spherical distributions can irradiate normal tissues to high dose as well as the target region. The current improvement to dose distribution utilizes treating multiple isocenters or weighting various arcs to change treatment volume shape. in this paper another promising study relies upon dynamically shaping the treatment beam to fit the beam's eye view of the target. This conformal irradiation technique was evaluated by means of visual three dimensional dose distribution, dose volume histograms to the target volume and surrounding normal brain. It is shown that using even less arcs than multiple isocenter irradiation technique, the conformal therapy yields comparable dose gradients and superior homogeneity of dose within the target volume.

  • PDF