• 제목/요약/키워드: isobutyrate

검색결과 33건 처리시간 0.025초

Effects of bamboo leaf extract on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows

  • Li, Yi;Fang, Luoyun;Xue, Fuguang;Mao, Shengyong;Xiong, Benhai;Ma, Zhu;Jiang, Linshu
    • Animal Bioscience
    • /
    • 제34권11호
    • /
    • pp.1784-1793
    • /
    • 2021
  • Objective: An experiment was conducted to evaluate the effects of bamboo leaf extract (BLE) on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows. Methods: The experiment comprised a 14-day adaptation period and a 21-day experimental period and was conducted in a high-temperature and humidity environment (daily mean ambient temperature = 33.5℃±1.3℃; daily mean relative humidity = 64.9%±0.8%, daily mean temperature-humidity index = 86.2±0.4). Twelve Holstein dairy cows were randomly allocated into two groups. A total mixed ration supplemented with BLE at 0 (CON) and 1.3 g/kg dry matter (DM) were fed, respectively. Feed intake and milk yield were recorded daily. Milk samples were collected on 1, 11, and 21 d of the experimental period to analyze milk performance. Rumen fluid samples were collected on 21 d of the experimental period to analyze rumen fermentation parameters and rumen bacterial communities. Results: Compared with the control group, supplementation of BLE increased milk yield (p<0.01), milk fat yield (p = 0.04), 4% fat-corrected milk (p<0.01) and milk fat content (p<0.01); reduced somatic cell count (p<0.01). No differences in DM intake and milk protein or lactose content were observed between two groups. Supplementation of BLE also increased the rumen total volatile fatty acid (p<0.01), acetate (p<0.01), butyrate (p<0.01), and valerate (p = 0.05) concentrations. However, no significant effects were observed on rumen pH, ammonia nitrogen, propionate, acetate/propionate ratio, isobutyrate, or isovalerate. Furthermore, BLE increased the rumen bacterial abundance and the diversity of the rumen bacterial community. The BLE reduced the Firmicutes/Bacteroidetes abundance ratio and increased the abundances of Butyrivibrio_2 (p<0.01) and Ruminococcus_2 (p<0.01). Conclusion: The BLE supplementation at 1.3 g/kg DM could improve production performance and rumen fermentation in dairy cows during heat stress.

Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau

  • Fan, Qingshan;Wanapat, Metha;Hou, Fujiang
    • Animal Bioscience
    • /
    • 제34권9호
    • /
    • pp.1466-1478
    • /
    • 2021
  • Objective: Ruminants are completely dependent on their microbiota for rumen fermentation, feed digestion, and consequently, their metabolism for productivity. This study aimed to evaluate the rumen bacteria of lactating yaks with different milk protein yields, using high-throughput sequencing technology, in order to understand the influence of these bacteria on milk production. Methods: Yaks with similar high milk protein yield (high milk yield and high milk protein content, HH; n = 12) and low milk protein yield (low milk yield and low milk protein content, LL; n = 12) were randomly selected from 57 mid-lactation yaks. Ruminal contents were collected using an oral stomach tube from the 24 yaks selected. High-throughput sequencing of bacterial 16S rRNA gene was used. Results: Ruminal ammonia N, total volatile fatty acids, acetate, propionate, and isobutyrate concentrations were found to be higher in HH than LL yaks. Community richness (Chao 1 index) and diversity indices (Shannon index) of rumen microbiota were higher in LL than HH yaks. Relative abundances of the Bacteroidetes and Tenericutes phyla in the rumen fluid were significantly increased in HH than LL yaks, but significantly decreased for Firmicutes. Relative abundances of the Succiniclasticum, Butyrivibrio 2, Prevotella 1, and Prevotellaceae UCG-001 genera in the rumen fluid of HH yaks was significantly increased, but significantly decreased for Christensenellaceae R-7 group and Coprococcus 1. Principal coordinates analysis on unweighted UniFrac distances revealed that the bacterial community structure of rumen differed between yaks with high and low milk protein yields. Furthermore, rumen microbiota were functionally enriched in relation to transporters, ABC transporters, ribosome, and urine metabolism, and also significantly altered in HH and LL yaks. Conclusion: We observed significant differences in the composition, diversity, fermentation product concentrations, and function of ruminal microorganisms between yaks with high and low milk protein yields, suggesting the potential influence of rumen microbiota on milk protein yield in yaks. A deeper understanding of this process may allow future modulation of the rumen microbiome for improved agricultural yield through bacterial community design.

Beet pulp as soluble fiber source and dietary energy levels for growing pigs under heat stress

  • Yo Han Choi;Ye Jin Min;Da Yeon Jeon;Hyun Ju Jin;Yong Dae Jeong;Hyun Ju Park;Abdolreza Hosseindoust;Sang Hun Ha;Jun Young Mun;Jin Soo Kim;Jo Eun Kim
    • Journal of Animal Science and Technology
    • /
    • 제65권5호
    • /
    • pp.989-1001
    • /
    • 2023
  • The study evaluated the effects of dietary fiber and energy levels administered during two growing periods (d 0-28 and d 29-56) for pigs exposed to a high temperature. A total of 96 growing pigs were used in six treatments as: Two treatments in thermoneutral temperature (21℃-24℃) with dietary energy of 3,300 and the inclusion of high or low fiber, two treatments in heat stress (30℃-34℃) with dietary energy of 3,300 and the inclusion of high or low fiber, and two treatments in heat stress with dietary energy of 3,450 and the inclusion of high or low fiber. Among standard energy level treatments, heat-stressed pigs showed lower average daily gain (ADG), feed intake, digestibility of dry matter, gross energy, crude protein, and crude fiber in phases 1 and 2. Moreover, higher concentrations of acetate, propionate, butyrate, and total short-chain fatty acid (SCFA) in feces were shown in pigs fed high fiber diets. There was a negative interaction between dietary fiber and energy for the fecal concentration of isobutyrate in phase 1 and valerate in phase 2. Pigs in heat stress treatments showed a higher rectal temperature, respiratory rate, hair cortisol, plasma zonulin, and fecal lipocalin-2. Among heat stress treatments, the overall ADG was increased in pigs fed high fiber. Pigs fed high dietary fiber showed a greater concentration of acetate, propionate, butyrate, and total SCFA. High fiber treatments decreased plasma zonulin. In conclusion, the inclusion of beet pulp, soluble fiber, at the level of 4% looks necessary in pigs diet during heat stress.