• 제목/요약/키워드: ischemic injury

검색결과 428건 처리시간 0.022초

Glucose/Oxygen Deprivation Induces Release of $[^3H]5-hydroxytryptamine$ Associated with Synapsin 1 Expression in Rat Hippocampal Slices

  • Park, Eun-Mi;Chu, Sang-Hui;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.347-353
    • /
    • 2000
  • It has been well documented that a massive release of not only glutamate but also other neurotransmitters may modulate the final responses of nerve cells to the ischemic neuronal injury. But there is no information regarding whether the release of monoamines is directly associated with synaptic vesicular proteins under ischemia. In the present study, it was investigated whether synapsin 1, syntaxin and SNAP-25 are involved in the release of 5-hydroxytryptamine $([^3H]5-HT)$ in glucose/oxygen deprived (GOD) rat hippocampal slices. And, the effect of NMDA receptor using DL-2-amino-5-phosphonovaleric acid (APV) on ischemia- induced release of 5-HT and the changes of the above proteins were also investigated. GOD for 20 minutes enhanced release of $[^3H]5-HT,$ which was in part blocked by the NMDA receptor antagonist, APV. The augmented expression of synapsin 1 during GOD for 20 minutes, which was also in part prevented by APV. In contrast, the expression of syntaxin and SNAP-25 were not altered during GOD. These results suggest that ischemic insult induces release of $[^3H]5-HT$ associated with synapsin 1, synaptic vesicular protein, via activation of NMDA receptor in part.

  • PDF

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Effect of Renal Ischemia in Tetraethylammonium Transport in Rabbit Renal Coritcal Slices

  • Joo, Woo-Sik;Nam, Yun-Jeong;Jung, Jin-Sup;Kim, Yong-Keun
    • The Korean Journal of Physiology
    • /
    • 제25권2호
    • /
    • pp.171-177
    • /
    • 1991
  • This study was carried out to determine effect of acute renal ischemia on transport function of organic cation, tetraethylammonium (TEA), in rabbit kidney proximal tubule. Clamping of the renal artery for 30 and 60 min produced a polyuria which was accompanied by an increase in $Na^+$ excretion. The capacity of kidney cortical slices to accumulate TEA was increased after 30 and 60 min of ischemia. When blood flow was restored for 30 min after 30 and 60 min of ischemia, the augmented TEA uptake was recovered to the control values. Oxygen consumption of cortical slices was stimulated after 30 min of ischemia, whereas it was not altered by 60 min of ischemia. A 90-min ischemia produced a significant inhibition of TEA uptake and tissue oxygen consumption. These results suggest that the basolateral transport system for organic cation persists after ischemic periods of 60 min despite evidence that tubular reabsorptive mechanism of $Na^+$ and water is markedly impaired. This may indicate that the active secretory systems of proximal tubule are more resistant to ischemic injury than the reabsorptive systems.

  • PDF

Estradiol Valerate Exerts Neuroprotective Effects in Ischemic Rat Brain when Administered after Middle Cerebral Artery Occlusion

  • Yoo, Seong-Jin;Yu, Jeong-Min;Youm, Mi-Young;Kim, Do-Rim;Kim, Jee-Yun;Kang, Sung-Goo
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.111-111
    • /
    • 2002
  • Stroke occurs when local thrombosis, embolic particle or the rupture of blood vessele interrupts the blood floe to the brain. $\beta$-estradiol 17-valerate has been reported to exert neuroprotective effects when administered before an ischemic insult. Recently, the pathophysiology of cerebral ischemia has been studied extensively in rat with various methods. In the present study, we investigates whether $\beta$-estrodiol 17-valerate can protect against brain injury. RNA sample were extracted from the hippocampus of female rat, reverse-transcription in the presence of [$\alpha$32p] dATP. Differential gene express-ion profiles were revealed (Bone morphogenetic protein type 1A receptor, Protein disulphide isomerase, Leukemia inhibitor factor receptor, cytochrome bc- 1 complex-x core P, thiol-specific antioxidant protein). RT-PCR was used to validate the relative expression pattern obtained by the cDNA array. The precise relationship between the early expression of recovery genes and stroke is a matter of luther investigation. This Study was supported by the Korea Science and Engineering Foundation(KOSEF) through the Biohealth Products Research Center(BPRC), Inje University, Korea.

  • PDF

Autophagy in Ischemic Livers: A Critical Role of Sirtuin 1/Mitofusin 2 Axis in Autophagy Induction

  • Chun, Sung Kook;Go, Kristina;Yang, Ming-Jim;Zendejas, Ivan;Behrns, Kevin E.;Kim, Jae-Sung
    • Toxicological Research
    • /
    • 제32권1호
    • /
    • pp.35-46
    • /
    • 2016
  • No-flow ischemia occurs during cardiac arrest, hemorrhagic shock, liver resection and transplantation. Recovery of blood flow and normal physiological pH, however, irreversibly injures the liver and other tissues. Although the liver has the powerful machinery for mitochondrial quality control, a process called mitophagy, mitochondrial dysfunction and subsequent cell death occur after reperfusion. Growing evidence indicates that reperfusion impairs mitophagy, leading to mitochondrial dysfunction, defective oxidative phosphorylation, accumulation of toxic metabolites, energy loss and ultimately cell death. The importance of acetylation/deacetylation cycle in the mitochondria and mitophagy has recently gained attention. Emerging data suggest that sirtuins, enzymes deacetylating a variety of target proteins in cellular metabolism, survival and longevity, may also act as an autophagy modulator. This review highlights recent advances of our understanding of a mechanistic correlation between sirtuin 1, mitophagy and ischemic liver injury.

흰쥐에서 우절(藕節) 추출물의 국소 뇌혈류량 조절 효과 (Effect of Nodus Nelumbinis Rhizomatis Extract on the Regulation of Regional Cerebral Blood Flow in Rats)

  • 김영균;권미정;조수인
    • 대한본초학회지
    • /
    • 제20권3호
    • /
    • pp.75-81
    • /
    • 2005
  • Objectives : In brain disorders such as ischemic stroke, the final outcome depends largely on the duration and the degree of the ischemia as well as the susceptibility of various cell types in the affected brain region. In the present study, the effects of Nodus Nelumbinis Rhizomatis Extract(NNRe) were tested for the anti-oxidative action of rCBF. Methods : Regional cerebral blood flow(rCBF) were determined by LDF methods. LDF allows for real time, noninvasive, continuous recordings of local CBF. The LDF method has been widely used to trace hemodynamic changes in the superficial or the deep brain structures in experimental stroke research. Results : NNRe treatment showed no change on rCBF in methylene blue, ODQ and L-NNA pretreated rats. 120 minutes of MCAO and followed reperfusion, 0.1% concentration of NNR treatment improved the altered cerebral hemodynamics of cerebral ischemic by increasing rCBF. Conclusions : The ischemia/reperfusion induced oxidative stress may have contributed to cerebral damage in rats, and the present study provides clear evidences for the beneficial effect of NNR on ischemia/reperfusion induced brain injury.

  • PDF

A Study on the Effects of Needle Electrode Electrical Stimulation on the Number of c-Fos Response Cells and c-Fos Expression in the Global Ischemic Rats

  • Kim, Sung Won;Song, Young Wha;Lee, Jung Sook
    • 국제물리치료학회지
    • /
    • 제7권2호
    • /
    • pp.1031-1036
    • /
    • 2016
  • c-Fos is known to related to synaptic plasticity and apoptosis in damage from ischemia or external injury. The purpose of this study was to investigate whether needle electrode electrical stimulation(NEES) is effective in increasing the number of c-Fos response cells and c-Fos expression in striatum after global ischemia in rats. There were no treatment and occlusion in the control group, global ischemia(GI) group were no treatment after carotid artery occlusion, and needle electrode electrical stimulation(NEES) group were treated with NEES after GI induced. The number of striatum c-Fos response cells and c-Fos protein expression significantly decreased in the NEES group compared to the GI group after 12, 24, 48 hours. The results of the present study suggest that NEES is ineffective in improving global ischemia in rats and may also be ineffective in the globally ischemic human brain.

뇌졸중 유발 백서모델에서 환경강화와 말초신경전기자극이 중추신경계의 신경성장인자에 미치는 영향 (The Effects of Nerve Growth Factor Expression of Central Nerve System by Environmental Enrichment and Peripheral Nerve Electrical Stimulation in Brain Ischemia Model Rats)

  • 김사열;김은정;김계엽
    • The Journal of Korean Physical Therapy
    • /
    • 제19권4호
    • /
    • pp.33-41
    • /
    • 2007
  • Purpose: To investigate environmental enrichment and nerve stimulation follows in application times with the change of BDNF & Trk-B receptor in the motor cortex and spinal cord. Methods: Experimental groups were divided into the five groups. Group I: normal control group, Group II: experiment control group, Group III: sciatic never electrical stimulation after MCAO, Group IV: application of only environmental enrichment after MCAO, Group V: never electrical stimulation with environmental enrichment after MCAO. Histologic observation and coronal sections were processed individually in goat polyclonal antibody phosphorylated BDNF and rabbit polyclonal antibody Trk-B receptor. Results: In immunohistochemistric response of BDNF and Trk-B, group II were showed that lower response effect at postischemic 1 days, 3 days, and 7 days. Group V were showed that increase response effect at postischemic 3 days, 7 days and 14 days. Specially showed that the most response effect at postischemic 14 days. In neurobehavioral assessment, group V were significantly difference from other groups on between-subject effects. Conclusion: The above results suggest that combined environmental enrichment with peripheral nerve electrical stimulation in focal ischemic brain injury were more improved that the change of BDNF & Trk-B receptor expression than non treatment.

  • PDF

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation

  • Im, Jun Hyung;Yeo, In Jun;Hwang, Chul Ju;Lee, Kyung Sun;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.152-162
    • /
    • 2020
  • Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.