• Title/Summary/Keyword: irrigation water quality

Search Result 395, Processing Time 0.025 seconds

Investigation of Water Quality and Irrigation Water Use Possibility of Reservoirs Near Saemangeum for Upland and Horticultural Fields (전작.원예단지 조성을 위한 새만금 인근 주요 저수지의 수질조사 및 용수이용 가능성 연구)

  • Song, Jae-Do;Son, Jae-Gwon;Choe, Jin-Gyu;Kim, Yeong-Ju
    • KCID journal
    • /
    • v.14 no.2
    • /
    • pp.214-224
    • /
    • 2007
  • This study was carried out to investigate of water quality and irrigation water use possibility of reservoirs near Saemangeum for upland and horticultural fields. Water samples were taken at 6 reservoirs for 5 months from June, 2006 to November, 2006. The water temperature, pH, EC, EC, chlorophyll - a of 6 reservoirs were ranged 8.7-$31.2^circC$, 6.9-9.2, 73.0-637.0$\mu$S/cm, 0.9-443.2mg/$m^3$, respectively. The concentration of DO, BOD, COD, T-N, T-P and SS were ranged 5.7-11.7mg/L, 0.5-8.9mg/L, 2.9-18.0mg/L, 0.07-6.52mg/L, 0.002-0.406mg/L, 0.5-54.0mg/L Also, storage ratio and storage capacity of Mije reservoir, Okgu reservoir, Oknyeo reservoir, Neungje reservoir were decreased between June and April, but those of Oksan reservoir was kept high during irrigation period. Water supply of reservoirs was 4,474,100$m^3$(Oksan), 6,165,900$m^3$(Mije), 13,209,900$m^3$(Okgu), 4,675,600$m^3$(Oknyeo), 7,682,000$m^3$(Neungje), 19,231,000$m^3$(Cheongho) in 2006, respectively. It is resevoirs for upland and horticultural fields that use main irrigation water resources before Saemanguem fresh-water lake development, and use assistance irrigation water resources in emergency after Saemanguem fresh-water lake development. In the meantime, for continuous use of reservoir as irrigation water resource for upland and horticultural fields, we must examine about surplus water capacity, and need investigation about supply possibility of irrigation water, condition of irrigation water, water quality.

  • PDF

An Evaluation study on Total Nitrogen(T-P) Item of Agricultural Water Standards (농업용수 수질기준 T-P 항목에 대한 검증실험(I))

  • Choi, Sun-Hwa;Kim, Ho-Il;Yoon, Kyung-Seup;Lee, Bong-Hun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.603-606
    • /
    • 2003
  • This study was carried out to investigate the effects of T-P concentrations in irrigation water on the growth, yield, and grain quality of rice. It acquire fundamental knowledges to set up irrigation water quality standards. The pot experiment was conducted with 5 treatments using irrigation waters. It consisted of various total phosphorus concentrations(control, 1, 2, 5, 10mg/L) and replicated four times with randomized block design. The results of this study showed that as T-P concentrations in irrigation water increases, plant height tended to increase. Dry weight of rice plant at T-P 10mg/L was significantly higher than the control. However, T-P in irrigation water did not affect plant height, tiller number, plant dry weight, yield, and quality of rice.

  • PDF

Irrigation Frequency for Kentucky Bluegrass (Poa pratensis) Growth (관수빈도에 따른 Kentucky Bluegrass 생육)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.123-128
    • /
    • 2012
  • Kentucky bluegrass (Poa pratensis) is most widely used in golf courses and athletic fields. Weakness of Kentucky bluegrass is shallow root zone and has weak tolerance to shade. One of the biggest disadvantages is high demand of water. Water content is important factor to maintain excellent color and quality of turfgrass. There are two irrigation methods which are 'deep and infrequent (DI)' and 'Light and frequent (LI)'. The objective of the study is to investigate Kentucky bluegrass growth treated by different irrigation frequency. Three irrigation frequency were made; no irrigation, every other day, and weekly. The same amount of water was used between every other day and weekly irrigation except no irrigation. No irrigation mean no artificial water supply and precipitation only. No irrigation treatment produced turfgrass quality lower than acceptable rating of six in July and August. Under the weather condition of 2011, no irrigation could not maintained acceptable turfgrass quality. No significant differences were found for Kentucky bluegrass quality between DI and LI.

Analysis of Water Quality Improvement in Downstream River of Heightening Irrigation Dam through the Reservoir Operation (둑높이기 농업용저수지의 운영을 통한 하천 수질개선 효과 분석)

  • Jee, Yong-Keun;Lee, Mi-Seon;Lee, Jin-Hee;Jang, Jea-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.929-941
    • /
    • 2012
  • In recent years, interest in river environment such as riparian landscape, water quality and ecological conservation has been growing with increasing recreation on agricultural river watershed. That caused the increase of necessity of water resources development, one of solutions for the diversification of agricultural water demand and shortages. In this respects, heightening irrigation dam, as a part of the 4-major river restoration project, is necessary to secure not only additional agricultural water but also instream flow for water quality improvement. However, operation plan of irrigation dam still not be clear. In this study, additional storage which secured through heightening irrigation dam was estimated using SWAT model. And instream flow effects on water quality of downstream were evaluated. The findings show that the additional water supply will contribute positively to water quantity and quality of downstream. The results show a 2~10% water quality improvement effect on nutrients, as well as an 1~8% water quantity increasing effect. In particular, additional storage can be effectively supplied from February to April by the reservoir operation. However, maintaining better water quality in irrigation reservoirs is important because the water quality of irrigation reservoirs can be negatively impacts the water quality in downstream of reservoirs.

Effects of Saline Irrigation Water on Lettuce and Carrot Growth in Protected Cultivation (관개용수 염도수준에 따른 시설 상추 및 당근의 생육 영향 분석)

  • Jeon, Jihye;Jeong, Hanseok;Kim, Hakkwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.113-120
    • /
    • 2015
  • The objectives of this study were to monitor and assess the effects of saline irrigation water on lettuce and carrot growth in protected cultivation. One control and 4 treatments with three replications, which were differentiated according to the level of salinity in irrigated water, were employed for each vegetable to assess the effects of the irrigation with saline water. Monitoring results showed that the use of irrigation water containing above a certain level of salinity was found to cause excessive accumulation of salts in the soil as saline irrigation water increased electrical conductivity (EC) and sodium ($Na^+$) content in both lettuce and carrot soil samples, while tap water irrigation used as control decreased the salinity in the samples. The salinity higher than the threshold level of irrigation water was found to reduce the yields of lettuce and carrot, while in less than the threshold level the higher the salinity of the irrigation water increased the yields. The salinity of the irrigation water also appeared to increase the internal salinity of the plant as the $Na^+$ content in plant increased as the salinity of irrigation water increase. Increased $Na^+$ content was analyzed to be able to increase the sugar content in carrot. This study could contribute to suggest water quality criteria for safe use of saline water in protected cultivation, although long-term monitoring is needed to get more representative results.

Evaluation of SRI Water Management on the Reduction of Irrigation Supply and NPS Pollution in Paddies (SRI 물관리 방법이 논의 관개용수량과 비점오염원 저감에 미치는 영향)

  • Seo, Jiyeon;Park, Baekyung;Park, Woonji;Yoon, Kwangsik;Choi, Dongho;Kim, Yongseok;Ryu, Jichul;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • Monitored data (rainfall runoff and water quality) from 4 different paddy sites over 3 years were compared to analyze the effect of irrigation water management on irrigation supply and rainfall runoff quality in Korea. The system of rice intensification water management was adopted at one site (SRI) while the conventional water management method was used for rice culture at the other three sites (CT, SD and HD). The soil texture at SRI, CT and SD was sandy loam while that at HD was silt loam. The average reduction of irrigation supply at SRI compared with CT, SD and HD during the 3 years studied was 49%, 51% and 55%, respectively. The average event mean concentration (EMC) at SRI compared with that at CT, SD and HD was decreased by 35% (BOD), 44% (COD), 47% (SS), 19% (TN) and 38% (TP). The correlation between rainfall runoff and the measured non-point source (NPS) pollutants was very good in general. The comparison revealed that SRI water management significantly reduced both irrigation supply and EMC in rainfall runoff. Paddy NPS pollution was closely related to factors that induce runoff such as rainfall and irrigation supply. It was concluded that SRI management could be an effective and practical option to cope with both water shortage due to climate change and water quality improvement in rural watersheds. However, further studies are recommended in large irrigation districts for use in the development and implementation of NPS pollution policies since the data was collected from field sized paddies.

Smart irrigation technique for agricultural water efficiency against climate change (기후변화 대응 물 효율성 증대를 위한 스마트 관개기술 연구)

  • Kim, Minyoung;Jeon, Jonggil;Kim, Youngjin;Choi, Yonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.198-198
    • /
    • 2017
  • Climate change causes unpredictable and erratic climatic patterns which affects crop production in agriculture and threatens public health. To cope with the challenges of climate change, sustainable and sound growth environment for crop production should be secured. Recent attention has been given to the development of smart irrigation system using sensors and wireless network as a solution to achieve water conservation as well as improvement in crop yield and quality with less water and labor. This study developed the smart irrigation technique for farmlands by monitoring the soil moisture contents and real-time climate condition for decision-making support. Central to this design is micro-controller which monitors the farm condition and controls the distribution of water on the farm. In addition, a series of laboratory studies were conducted to determine the optimal irrigation pattern, one time versus plug time. This smart technique allows farmers to reduce water use, improve the efficiency of irrigation systems, produce more yields and better quality of crops, reduce fertilizer and pesticide application, improve crop uniformity, and prevent soil erosion which eventually reduce the nonpoint source pollution discharge into aquatic-environment.

  • PDF

Review of the Agricultural Water Quality Standards through Rice Culture with Treated Sewage Irrigation (오수처리수 관개 벼재배를 통한 농업용수 수질기준의 검토)

  • 윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.44-54
    • /
    • 1999
  • Agricultural water quality standards were reviewed through rice culture using treated sewage irrigation . The seqage from school building of Konkuk University was treated by a constructed wetland system, and theeffluent of the systeml was irrigated for rice culutre after nutrient concentration adjusted by dilution. Average concentration of COD, SS, T-N and T-P in irrigated water was 22.3mg/$\ell$, 6.5mg/$\ell$, 25.8 mg/$\ell$and 2.2mg/$\ell$, respectively. Treatment include irrigation of adjusted effluent with conventional fertilization (TWCF), adjusted effluent with no fertilization (TWNF). and effluent of the wetland system as it was with no fertilization (SWNF). These treatment plots were compared with control plot irrigated by tap water with conventional fertilization (CONTROL). Other environmentals for rice culture were identical for all the plots. Among them, TWCF showed the best growth rate and the highest yield, and constituents in the harvested rice showed not much difference among them. Which implies that irrigation with relatively high nutrient concentration compared to the current water quality standards may cause no adverse effect on rice culture and could be even beneficial . Although T-N for this study was 25 times greater than the current standards, rice culture wasnot adversely affected by irrigatino water quality and even beeter results were observed than the CONTROL. It could be mistakenly that clean irrigation water produces better agricultural product, however, it is not necessarily true. Irrigation water with moderate nutrient concentration can enhance the plant growth, and better result might be expected. Therefore, peer review and modification if necessary are needed to the current agricultural water quality standards, especially for the nutrient components.

  • PDF

Assessment of stream water quality and pollutant discharge loads affected by recycled irrigation in an agricultural watershed using HSPF and a multi-reservoir model (HSPF와 다중 저류지 모형을 이용한 농업지역 순환관개에 의한 하천 수질 및 배출부하 영향 분석)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The recycled irrigation is a type of irrigation that uses downstream water to fulfill irrigation demand in the upstream agricultural areas; the used irrigation water returns back to the downstream. The recycled irrigation is advantageous for securing irrigation water for plant growth, but the returned water typically contains high levels of nutrients due to excess nutrients inputs during the agricultural activities, potentially deteriorating stream water quality. Therefore, quantitative assessment on the effect of the recycled irrigation on the stream water quality is required to establish strategies for effective irrigation water supply and water quality management. For this purpose, a watershed model is generally used; however no functions to simulate the effects of the recycled irrigation are provided in the existing watershed models. In this study, we used multi-reservoir model coupled with the Hydrological Simulation Program-Fortran (HSPF) to estimate the effect of the recycled irrigation on the stream water quality. The study area was the Gwangok stream watershed, a subwatershed of Gyeseong stream watershed in Changnyeong county, Gyeongsangnam-do. The HSPF model was built, calibrated, and used to produce time series data of flow and water quality, which were used as hypothetical observation data to calibrate the multi-reservoir model. The calibrated multi-reservoir model was used for simulating the recycled irrigation. In the multi-reservoir model, the Gwangok watershed consisted of two subsystems, irrigation and the Gwangok stream, and the reactions (plant uptake, adsorption, desorption, and decay) within each subsystem, and fluxes of water and materials between the subsystems, were modeled. Using the developed model, three scenarios with different combinations of the operating conditions of the recycled irrigation were evaluated for their effects on the stream water quality.

Characteristics of Nutrient Export from Paddy Rice Fields with Irrigation Practices (관개수원에 따른 논에서의 영양물질 배출 특성)

  • Hwang, Ha-Sun;Kong, Dong Soo;Shin, Dong-Suk;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.597-602
    • /
    • 2004
  • Field experimental study was performed to examine characteristics of nutrient export from paddy rice fields with irrigation practices. Experimental fields with surface-water and ground-water irrigation were monitored and analyzed during rice culture period. The water balance showed that outflow generally balanced the inflow showing that about half (58~68%) of total outflow was lost by surface drainage. Water and nutrient export are more in surface-water irrigation paddy than in ground-water irrigation paddy. The reasons might be more irrigation water available and easy to use in surface-water irrigation. If irrigation water reduced, it could result in reduction of nutrient export in paddy rice fields, which can save water and protect water quality. However, deviation from conventional standard practices might affect the rice yield and further investigations are necessary.