• Title/Summary/Keyword: irrigation supply estimation

Search Result 35, Processing Time 0.026 seconds

Estimation of irrigation supply from agricultural reservoirs based on reservoir storage data

  • Kang, Hansol;An, Hyunuk;Lee, Kwangya
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.999-1006
    • /
    • 2019
  • Recently, the quantitative management of agricultural water supply, which is the main source for water consumption in Korea, has become more important due to the effective water management organization of the Korean government. In this study, the estimation method for irrigation supply based on agricultural reservoir storage data was improved compared to previous research, in which drought year selection was unclear, and the outlier data for the rainfall-irrigation supply were not eliminated in the regression analysis. In this study, the drought year was selected by the ratio of annual precipitation to mean annual precipitation and the storage rate observed before the start of irrigation. The outlier data for the rainfall-irrigation supply were eliminated by the Grubbs & Beck test. The proposed method was applied to nine agricultural reservoirs for validation. As a result, the ratio of annual precipitation to mean annual precipitation is less than 53% and the storage rate observed before the start of irrigation is less than 55% it was judged to be the drought year. In addition, the drought supply factor, K, was found to be 0.70 on average, showing closer results to the observed reservoir rates. This shows that water management at the real is appling drought year practice. It was shown that the performance of the proposed method was satisfactory with NSE (Nash-Sutcliffe model efficiency coefficient) and R2 (coefficient of determiniation) except for a few cases.

Estimation of irrigation return flow from paddy fields based on the reservoir storage rate

  • An, Hyunuk;Kang, Hansol;Nam, Wonho;Lee, Kwangya
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • This study proposed a simple estimation method for irrigation return flow from paddy fields using the water balance model. The merit of this method is applicability to other paddy fields irrigated from agricultural reservoirs due to the simplicity compared with the previous monitoring based estimation method. It was assumed that the unused amount of irrigation water was the return flow which included the quick and delayed return flows. The amount of irrigation supply from a reservoir was estimated from the reservoir water balance with the storage rate and runoff model. It was also assumed that the infiltration was the main source of the delayed return flow and that the other delayed return flow was neglected. In this study, the amount of reservoir inflow and water demand from paddy field are calculated on a daily basis, and irrigation supply was calculated on 10-day basis, taking into account the uncertainty of the model and the reliability of the data. The regression rate was calculated on a yearly basis, and yearly data was computed by accumulating daily and 10-day data, considering that the recirculating water circulation cycle was relatively long. The proposed method was applied to the paddy blocks of the Jamhong and Seosan agricultural reservoirs and the results were acceptable.

Evaluation of the Irrigation Water Supply of Agricultural Reservoir Based on Measurement Information from Irrigation Canal (수로부 계측정보 기반 농업용 저수지의 관개용수 공급량 평가)

  • Lee, Jaenam;Noh, Jaekyoung;Kang, Munsung;Shin, Hyungjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.63-72
    • /
    • 2020
  • With the implementation of integrated water management policies, the need for information sharing with respect to agricultural water use has increased, necessitating the quantification of irrigation water supply using monitoring data. This study aims to estimate the irrigation water supply amount based on the relationship between the water level and irrigation canal discharge, and evaluate the reliability of monitoring data for irrigation water supply in terms of hydrology. We conducted a flow survey in a canal and reviewed the applicability of the rating curve based on the exponential and parabolic curves. We evaluated the reliability of the monitoring data using a reservoir water balance analysis and compared the calculated results of the supply quantity in terms of the reservoir water reduction rate. We secured 26 readings of measurement data by varying the water levels within 80% of the canal height through water level control. The exponential rating curve in the irrigation canal was found to be more suitable than the parabolic curve. The irrigation water supplied was less than 9.3-28% of the net irrigation water from 2017 to 2019. Analysis of the reservoir water balance by applying the irrigation water monitoring data revealed that the estimation of the irrigation water supply was reliable. The results of this study are expected to be used in establishing an evaluation process for quantifying the irrigation water supply by using measurement information from irrigation canals in agricultural reservoirs.

Estimation of Agricultural water demand considering multi-wide water supply system - On irrigation area of Sumjingang-dam - (광역 용수계통을 고려한 농업용수 필요수량의 산정 - 섬진강댐 수혜구역을 중심으로 -)

  • Moon, Jong-Won;Chung, Jin-Ho;Jang, Jung-Seok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.423-426
    • /
    • 2003
  • The purpose of this paper is to estimate Agricultural water demand at irrigation area of sumjin reservoir, the Dongjin River basin, which consist of multi-wide water supply system and complicated irrigation channel and supplementary irrigation facilities.

  • PDF

Assessing Irrigation Water Supply from Agricultural Reservoir Using Automatic Water Level Data of Irrigation Canal (관개용수로의 자동수위측정 자료를 활용한 농업용 저수지 공급량 산정 및 분석)

  • Bang, Jehong;Choi, Jin-Yong;Yoon, Pureun;Oh, Chang-Jo;Maeng, Seung-Jin;Bae, Seung-Jong;Jang, Min-Won;Jang, Taeil;Park, Myeong Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • KRC (Korea Rural Community Corporation) is in charge of about 3,400 agricultural reservoirs out of 17,240 agricultural reservoirs, and automatic water level gauges in reservoirs and canals were installed to collect reservoir and canal water level data from 2010. In this study, 10-minute water level data of 173 reservoir irrigation canals from 2016 to 2018 are collected, and discharge during irrigation season was calculated using rating curves. For estimation of water supply, irrigation water requirement was calculated with HOMWRS (Hydrological Operation Model for Water Resources System), and the summation of reservoir water storage decrease was calculated with daily reservoir storage data from RAWRIS (Rural Agricultural Water Resource Information System). From the results, the total yearly amount of irrigation water supply showed less than 10% difference than the irrigation water requirement. The regional analysis revealed that reservoirs in Jeollanam-do and Chungcheongnam-do supply greater irrigation water than average. On the contrary, reservoirs in Gyeongsangnam-do and Chungcheongbuk-do supply less than others. This study was conducted with a limited number of reservoirs compared to total agricultural reservoirs. Nevertheless, it can indicate irrigation water supply from agricultural reservoirs to provide information about agricultural water use for irrigation.

Optimal Estimation of Water Use in the Large-Scale Basin (대규모 유역에서의 적정 용수이용량 산정)

  • Ryoo, Kyong-Sik;Hwang, Man-Ha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.3-10
    • /
    • 2007
  • In general method to estimate the water supplies in the large-scale basin, indirect estimation method such as unit loading factor method has been used. However, the estimated water supplies are much different to the real water supplies used in the any basin because these general methods estimate them considering water supply demands only. Especially, water supplies for irrigation are big different to the real water supplies in which the water supplies for irrigation are depend on the weather conditions such as evaporation, basin conditions such as infiltration, the reservoir operation rule for irrigation water, and distribution methods. Thus, a new estimation method is developed to estimate the real water demands which is essential factors for the effective water resources operation in the basin. This method is for estimating the water supplies and return rates based on the survey of the irrigation reservoirs and the analysis of effects to the stream flows, return flows, and water supplies for irrigation which water supplies and return rates are used in the basin water management model. The water supply usages in each subbasin are validated by comparisons between the simulated discharges from the basin water management model and the discharges measured in the control points.

Network Modeling of Paddy Irrigation System using ArcHydro GIS (ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링)

  • Park, Geun-Ae;Park, Min-Ji;Jang, Jung-Seok;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.323-327
    • /
    • 2006
  • During the past decades in South Korea, there have been several projects to reduce water demand and save water for paddy irrigation system by automation. This is called as intensive water management system by telemetering of paddy ponding depth and canal water level and telecontrol of water supply facilities. This study suggests a method of constructing topology-based irrigation network system using GIS tools. For the network modeling, a typical agricultural watershed included reservoirs, irrigation and drainage canals, pumping stations was selected. ArcHydro tools composed of edge, junction, waterbody and watershed were used to construct hydro-network. ArcHydro Model was then designed and the network was successfully built using the HydroID. Visualization using ArcHydro tools could display table property of each object. ArcHydro Model was linked to Agricultural Water Demamd and Supply Estimation System (AWDS) which developed by Korea Rural Community and Agriculture Corporation (KRC) to extract information of the study area. And menu of supply facilities information, demand analysis and supply analysis constructed for information acquisition and visualization of acquired informations.

  • PDF

Network Modeling of Paddy Irrigation System using ArcHydro GIS - ANGO Agricultural Water District - (ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링 - 안고농촌용수구역을 대상으로 -)

  • Park, Geun-Ae;Park, Min-Ji;Jang, Jung-Seok;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.73-83
    • /
    • 2007
  • Network modeling of irrigation system that links irrigation facilities with stream is necessary to establish complicated rural water management system and to manage agricultural water effectively. This study attempted a network modeling for an agricultural water district called "ANGO" located in Anseongcheon watershed by connecting ArcHydro Model developed to control geographical information data in the field of water resources and AWDS(Agricultural Water Demand & Supply Estimation System) developed by KRC (Korea Rural Community & Agriculture Corporation). Network modeling was embodied by build topology between spatial objects of total 70 agricultural irrigation facilities (24 reservoirs, 18 pumping stations, 28 weirs) and stream network using ArcHydro Model. In addition, new menus were added in ArcGIS system for query and visualization of text-based AWDS outputs such as irrigation facilities information, water demand and supply analysis.

  • PDF

Operation Strategy of Groundwater Dam Using Estimation Technique of Groundwater Level (지하수위 예측기법을 활용한 지하댐 운영전략)

  • Bu, Seong-An;Sin, Sang-Mun;Choe, Yong-Seon;Park, Jae-Hyeon;Jeong, Gyo-Cheol;Park, Chang-Geun
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.236-245
    • /
    • 2006
  • Among a number of methodologies for developing groundwater supply to overcome drought events reported in the research community, an accurate estimation of the groundwater level is an important initial issue to provide an efficient method for operating groundwater. The primary objective of this paper is to develop an advanced prediction model for the groundwater level in the catchment area of the Ssangcheon groundwater dam using precipitation based period dividing algorithm and response surface methodology (RSM). A numerical example clearly shows that the proposed method can effectively forecast groundwater level in terms of correlation coefficient ($R^2$) in the upstream part of the Ssangcheon groundwater dam.

  • PDF