• 제목/요약/키워드: irrigation supply

검색결과 329건 처리시간 0.028초

벼 휴입건답직파 재배에서 합리적인 절수 관개방법 (Water-Saving Culture under Ridge Direct Seeding on Dry Paddy of Rice)

  • 최원영;박홍규;김상수;양원하;신현탁;조수연;최선영
    • 한국작물학회지
    • /
    • 제42권6호
    • /
    • pp.706-711
    • /
    • 1997
  • 벼 건답직파재배에서 권개수 부족시 합리적인 최소 권수방법을 밝히고자 전북통(미사질양토)에서 동진벼를 공시하여 5일 간격 고량관개, 10일간격 고랑관개, 15일 간격 고랑관개, 10일 간격 전면관개를 관행 물관리 방법과 비교하여 시험한 결과를 요약하면 다음과 같다. 1. 권개용수량 절감은 관행에 비해 15일간격 고랑관개(92.4%)>10일 간격 고랑관개(88.5%)>10일 간격 전면관개(78.6%)>5일간격 고랑관개 (58%) 순이었다. 2. 고랑에서 90cm까지는 고랑 관개후 5일에도 수분장력이 -50kpa 이하였으나 고랑에서 120cm는 고랑 관개후 4일에도 -70kpa 이상이었다. 3. 엽면적과 지상부 건물중은 관개 간격이 길수록 적었다. 4. 간장은 관행에 비해 관개 간격이 길수록 짧았으며, 전체 간장에 영향을 미친 절간은 상위 제1,2절간이었다. 5. 관개 간격이 길수록 수수 및 등숙비율이 낮아, 쌀수량은 관행관개(5.32MT/ha)에 비해 5일 간격 고랑관개는 5%, 10일 간격 전면 관개는 8% 감수하였으나, 10일 간격 고랑관개는 18%, 15일 간격 고랑관개는 28%의 유의적인 감수를 보였다. 이상의 결과로 보아 벼 휴입건답직파 재배에서 권개수가 부족시에도 최소한 5일간격 고랑관개나 10일간격 전면관개는 되어야 할 것으로 생각되며, 이러한 결과는 관개수가 부족할 경우에도 합리적인 휴입건답직파 재배의 물관리 기술로 이용될 것으로 기대된다.

  • PDF

마둔저수지 농업유역의 관개 회귀수량 추정 (Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir)

  • 김하영;남원호;문영식;방나경;김한중
    • 한국농공학회논문집
    • /
    • 제63권2호
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

유역외 보의 연계운영에 의한 유역배율이 작은 저수지의 유입량 확보 가능성 (Securing Inflows to Reservoir with Low Ratio of Watershed to Paddy Field Areas by Operating Outside Diversion Weir)

  • 노재경
    • 한국농공학회논문집
    • /
    • 제53권1호
    • /
    • pp.17-28
    • /
    • 2011
  • This study was performed to ascertain the possibility of securing inflows to reservoir with low ratio of watershed to paddy field areas by outside diversion weir. The case of Maengdong reservoir and Samryong diversion weir was selected. Most of inflows to Maengdong reservoir with watershed area of $7.06\;km^2$ and total storage capacity of $1,269{\times}10^4\;m^3$ are filled with intake water from outside Samryong diversion weir. Only using water storage data in Maengdong reservoir from 1991 to 2009, the range of water intake in Samryong diversion weir to Maengdong reservoir was optimized to 0.135~30 mm/d, from which water intake to Maengdong reservoir was $1,672.9{\times}10^4\;m^3$ (70.1 %) and downstream outflow to Weonnam reservoir was $714.4{\times}10^4\;m^3$ (29.9 %). The parameters of DAWAST model for reservoir inflow were determined to UMAX of 313.8 mm, LMAX 20.3 mm, FC 136.8 mm, CP 0.018, and CE 0.007. Inflows to Maengdong reservoir were $427.1{\times}10^4\;m^3$ (20.3 %) from inside watershed, and $1,672.9{\times}10^4\;m^3$ (79.7 %) from outside. Paddy irrigation water requirements were estimated to $1,549{\times}10^4\;m^3$ on annual average. Operation rule curve was drawn by using daily inflow and irrigation requirement data. By securing the amount of inflow to Maengdong reservoir to about 80 % from outside Samryong diversion weir, water supply capacity for irrigation of $1,549{\times}10^4\;m^3/yr$ was analyzed to be enough. Additional water supplies for instream flow were analyzed to $1,412\;m^3/d$ in normal reservoir operation, $36,000\;m^3/d$ in withdrawal limit operation by operation rule curve from October to March of non irrigation period.

밭작물 가뭄피해 경감을 위한 소류천 유출수 저수 시스템 개발 (Development of a Long-slope Water Harvesting System in Natural Channel for Drought Mitigation in Upland)

  • 김영진;최용훈;이상봉;김민영;전종길
    • 한국농공학회논문집
    • /
    • 제62권6호
    • /
    • pp.111-118
    • /
    • 2020
  • This study developed a rainwater harvesting system for the irrigation of upland on sloping area. The assessment of water supply capacity was evaluated in farm field experience. This system consists of a water catchment device and a collapsible storage tank. The water catchment device was designed to collect runoff water in natural channel of 500 mm width into a pipe of 50 mm inner diameter. The device has funnel-shaped plan and cross-section of square. The storage capacity of the collapsible water tank was caculated to meet the water demand for irrigation in 30 a cultivated land for 10-year frequancy drought. The tank has a cuboid shape with a capacity of 30 ㎥, 5 m in width and length, 1.2 m in height. This system can supply 92% of the water required for drop irrigation of red pepper and 88% of the water required for drop irrigation of onions in 30 a cultivation land during the month of May and June. In the case of 16-dry days of 10-years frequency, this system is capable to irrigate 100% of required water for red pepper and onion, 76.7% of required water for Omija (Schisandra chinensis), and 51.5% of required water for autumn kimchi cabbage.

고해상도 영상을 이용한 농업용수 수혜면적 및 용배수로 추출 기법 개발 (Development of Extraction Technique for Irrigated Area and Canal Network Using High Resolution Images)

  • 윤동현;남원호;이희진;전민기;이상일;김한중
    • 한국농공학회논문집
    • /
    • 제63권4호
    • /
    • pp.23-32
    • /
    • 2021
  • For agricultural water management, it is essential to establish the digital infrastructure data such as agricultural watershed, irrigated area and canal network in rural areas. Approximately 70,000 irrigation facilities in agricultural watershed, including reservoirs, pumping and draining stations, weirs, and tube wells have been installed in South Korea to enable the efficient management of agricultural water. The total length of irrigation and drainage canal network, important components of agricultural water supply, is 184,000 km. Major problem faced by irrigation facilities management is that these facilities are spread over an irrigated area at a low density and are difficult to access. In addition, the management of irrigation facilities suffers from missing or errors of spatial information and acquisition of limited range of data through direct survey. Therefore, it is necessary to establish and redefine accurate identification of irrigated areas and canal network using up-to-date high resolution images. In this study, previous existing data such as RIMS (Rural Infrastructure Management System), smart farm map, and land cover map were used to redefine irrigated area and canal network based on appropriate image data using satellite imagery, aerial imagery, and drone imagery. The results of the building the digital infrastructure in rural areas are expected to be utilized for efficient water allocation and planning, such as identifying areas of water shortage and monitoring spatiotemporal distribution of water supply by irrigated areas and irrigation canal network.

HYDRUS를 이용한 작물재배용 암면배지에서의 수분 이동 시뮬레이션 (Simulation of Water Movement in Rockwool Slab as Soil-less Cultivation Using HYDRUS)

  • 김동현;김종순;권순홍;박종민;최원식
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.153-162
    • /
    • 2023
  • It is important to determine water movement at the growing substrate used in soil-less cultivation for better management of water supply. Numerical simulation is a fast and versatile approach to evaluate highly accurate water distribution. The objective of this study is to simulate the water movement in rockwool as a soil-less medium using HYDRUS-2D. HYDRUS-2D was used to simulate the spatial and temporal water movement in two types of rockwool slabs (Floriculture (FL), high density; Expert (EP), low density). The simulation was performed at two pulse conditions: 10 min ON and 50 min OFF (case A), 20 min ON and 40 min OFF (case B). The total irrigation amounts were the same at both cases. In case A, during the irrigation ON, the water contents at FL increased 1.93-fold faster than the values at EP. Whereas, during the irrigation OFF, the decreasing rate of water contents at FL was almost the same as one at EP. At case B, these values were not changed much from case A. However, the duration of optimum water content (50% - 80%) was 15.0 min and 23.5 min at case A and case B, respectively. Thus, FL and 20 min ON and 40 min OFF (case B) could supply water to rockwool much faster and longer than EP. Once qualitatively validated, this simulation of water movement in rockwool could be used to design an effective optimum irrigation method for vegetables.

Economic analysis of irrigation facilities for securing water for field crops

  • Hyung Jin Shin;Jae Young Lee;Jae Nam Lee;Han Na Lee;Sang Hyeon Park;Bum Soo Shin;Sang Sun Cha;Se Myung Kwon;Jung Il Seo;Chan Gi Park
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.785-798
    • /
    • 2023
  • Considering irrigation facilities are currently insufficient and drought vulnerability due to climate change is high, efficient measures are required to secure water supply for field crops. This study, therefore, calculated the water shortage to secure water for representative field crops. An economic analysis was further conducted by comparing the production income to the input cost for each method. Here, five distinct regions were selected to represent each crop-Cheongyang-gun for chili peppers, Yesan-gun for apples, Dangjin-si for cabbages, Seosan-si for garlic, and Goesan for beans. The regions with insufficient water supply were estimated by calculating the water requirements and the supplied water from public groundwater wells for each area. A comprehensive set of four scenarios was presented as a strategy to ensure water security and manage irrigation facilities. These scenarios comprised the maintenance of existing groundwater wells, the construction of new water storage tanks, the installation of additional groundwater wells, and the utilization of surface water. B/C (benefit/cost) analysis was conducted for each scenario. As a result, the construction of water storage tanks was selected as a facility and water management plan in Cheongyang-gun, Dangjin-si, and Seosan-si. The analysis additionally indicated the economic viability of installing surface water utilization facilities in Yesan-gun and developing water storage tanks and groundwater (aquifer) wells in Goesan-gun. The results of this study are considered to serve as foundation data that may be utilized in the selection of water management plans for drought-prone areas in the future.

공적(公的)관리에서의 참여형 관개관리(PIM) 모델 (A Study on the Participatory Irrigation Management under Public Irrigation Management System)

  • 이성희;김태철
    • 한국농공학회논문집
    • /
    • 제53권3호
    • /
    • pp.13-17
    • /
    • 2011
  • There was a transition from participatory irrigation management (PIM) to public irrigation management (PubIM) in Korea when Korea Rural corporation and Community (KRC) merged with Farm Land Improvement Associations (FLIAs), which had managed 60 % of irrigation areas. While making a number of achievements, some problems occurred in the public irrigation management, such as lack of farmers' participation, increased amount of water usage, and elevating operating costs. Accordingly, this paper suggested ways to increase efficiency in water usage and reduce operating costs under the public management through the motive power of farmers participation. First, WUGs replaced the discarded water management committee should be reorganized to revive the concept of PIM in the form of autonomously reinforced one and the roles and functions of WUGs and the board of representatives should be strengthened. The member of new type of WUGs should participate in the national and regional water management committees as a stakeholder of irrigation water user. And also new type of WUGs initiates not only the management of irrigation water but also the management of irrigation water quality and non-point source pollution in the watersheds. Those additional activities of WUGs should be properly compensated. Second, subsidies (direct payments) should be provided to faithful farmers as an incentive for their labor supply. Third, water fees could be charged to large scale agriculture companies. Fourth, professional managers could be hired, management targets would be adjusted, and incentives should be offered. These efforts are expected to improve the irrigation management by encouraging farmers' participation under public system.