• Title/Summary/Keyword: irrigation district

Search Result 87, Processing Time 0.021 seconds

Analysis of Irrigation Water Use from Pumping Station (양수장 지구를 대상으로 한 농업용수 이용특성 분석(관개배수 \circled2))

  • 박기욱;정하우;석대식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.169-174
    • /
    • 2000
  • The analysis of irrigation water use characteristics from a pumping station is implemented. Sangjoo district was selected as a test area. Irrigation water are varied according to manners of water manager, weather change and irrigation system changes such as the repair and improvement of irrigation canal, installation of an auxiliary water sources and canal structure. From the results, average irrigation water is 1,136mm during irrigation period from 1987 to 1997 in sanjoo district. After improvement of irrigation district, irrigation water was increased 45% as average water use in this area.

  • PDF

Application of hydrology model and Monitoring on pumped-storage section in islands district (도서지역 양수저류 관개지구의 모니터링 및 수문모델 적용)

  • Kim, Young-hwa;Park, Ji-Sung;Lee, Yong-il;Han, Kuk-Heon;Kim, Chae-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.215-219
    • /
    • 2004
  • In this study, Types of irrigation water development in islands district were classified. The types were reservior, fleshwater lake, pumped storage, etc. Most of islands district has delveloped reuse irrigation system as a pumped storage system. But. Irrigation water-reuse ratio doesn't define a basis clearly and the value of measurement for water-reuse ratio doesn't exist so far. so, we measured Irrigation water-reuse to clarify for water-reuse ratio in a pumped storage system. Also, we need to develop hydrologic analysis and water balance method with characteristic factor of islands district. that make use of plan about security of agriculture water efficiently in islands district.

  • PDF

Analysis of Irrigation Efficiency and Pattern in Galshin Pumping District (갈신양수장 관개지구의 관개효율과 관개패턴분석)

  • Ryu, Bumhee;Park, Seungki
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.3
    • /
    • pp.91-102
    • /
    • 2020
  • The purpose of study was analyze the pumping characteristics, Irrigation Efficiency(IE), and irrigation pattern by period of rice growing stage with based on the performance of design irrigation water requirement and operational Galshin Pumping(GP) station in GP irrigation district constructed under rural water development project master plan. GP station was located in Yedang reservoir, Yesan-gun, Chungcheongnam-do and has been supplying irrigation water since 2006. The research data are the Irrigation Water Requirement(IWR) and the Pumping Water Amount(PWA) from 2006 to 2015 at the GP station, which is the supplied amount. The IWR were calculated using the Blaney-Criddle formula of the HOMWRS program, Hydrological Operation Model for Water Resource System, developed by Korea Rural Community Corporation. The Blaney-Criddle formula was used to calculate design irrigation water requirement of Galshin rural water development project master plan. During 2006-2015, the study period, the annual average IWR is 763.2(±149.1)mm, the annual PWA of the GP station is 397.4mm to 1,056.9mm, and those average annual PWA is 643.4(±208.4)mm. The annual IE of GP station 96.5% to 169.0%, and the average annual IE is 124.3%, which is higher than the research results conducted in other pumping stations. Analyzing the irrigation patterns of the GP irrigation district, the IWR Ratio per 10days(IWRR) and the PWA Ratio per 10days(PWAR) of the G P station were obtained. The IWRR is the percentage of IWR for each 10 days of a month to total IWR per year, and the PWAR is the percentage of PWA for each 10 days of a month to total PWA per year. The Kolmogorov- Smirnov(K-S) test results of IWRR and PWAR showed the characteristics classification by rice growing stage and stable normal distribution characteristics. Average IWRR(AIWRR) and Average PWAR(APWAR) are presented as irrigation patterns. Irrigation pattern analysis will be able to standardize comparison, analysis and probability calculation of the pumping station characteristics of different pumping stations and apply to objective evaluation of the pumping station district.

Survey on current Farmer's Irrigation Practice on upland in the Youngsan River Irrigation Project District IV (영산강 IV단계 사업지구 내 밭관개 실태조사)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Choi, Soo-Myung;Kim, Jin-Taek;Lee, Yong-Jik
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.287-290
    • /
    • 2003
  • To devise better development plan, survey was conducted about current Farmer's irrigation Practice on upland in the Youngsan River Irrigation Project District IV. Major upland crops are garlic and onion in this region. Currently, upland irrigation is conducted using ground water. It is found that irrigation interval is $2{\sim}3$ day for dry-field rice and $3{\sim}7$ days for other crop, in general. Whole day is required to irrigate for many farmers due to lack of facilities and water source. Farmers have no intention to change staple crops even after completion of Irrigation Project of Youngsan River District IV.

  • PDF

Survey on Current Farmer's Irrigation Practice on Upland in the Yeongsan River Irrigation Project District IV (영산강 IV단계 사업지구 밭관개 실태조사)

  • Yoon Kwang Sik;Kim Young Joo;Yoon Suk Gun;Han Kuk Heon;Kim Jin Taek
    • KCID journal
    • /
    • v.11 no.2
    • /
    • pp.55-63
    • /
    • 2004
  • To devise better development plan, survey was conducted about current farmer's irrigation management on upland in the YoungSan River Irrigation Project District IV. Major upland crops are garlic and onion in this region. Currently, upland irrigation has b

  • PDF

Simulating Daily Operational Characteristics of Irrigation (관개조직의 일별 모의 조작)

  • 이남호;정하우;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.67-78
    • /
    • 1990
  • A decision support system, Daily Irrigation Network Operation Simulation model (DINOPS) was developed that can adequately describe the physical behavior of an irrigation system. The model is to depict the physical features of complex water allocation schemes of the irrigation system and to simulate the response of the system to different irrigation schemes. The model was validated on the Banweol irrigation district by comparing the simulated canal discharges and paddy water levels with the field data. The operation of the DINOPS model was demonstrated on the irrigation district where several irrigation management practices were evaluated with computing irrigation efficiencies and rainfall effectiveness respectively. The model sensitivity with respect to heights of bund and block diversion rates were analyzed and discussed.

  • PDF

Characteristics of Irrigation Return Flow in a Reservoir Irrigated District (저수지 관개지구의 농업용수 회귀 특성 분석)

  • Song, Jung Hun;Song, Inhong;Kim, Jin-Taek;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • The objective of this study was to investigate characteristics of irrigation return flow from paddy block in a reservoir irrigated district during growing seasons. The irrigation return flow was divided into three parts, quick return flow from irrigation canal (RFI), quick return flow from drainage canal (RFD), and delayed return flow (DRF). The RFI was calculated from water level and stage-discharge relationships at the ends of the irrigation canals. The DRF was estimated using measured infiltration amount from paddy fields of the irrigated district. A combined monitoring and modeling method was used to estimate the RFD by subtracting surface runoff from surface drainage. The paddy block irrigated from the Idong reservoir was selected to study the irrigation return flow components. The results showed that daily agricultural water supply (AWS), the RFI, and the RFD were $27.4mm\;day^{-1}$, $4.9mm\;day^{-1}$, and $19.8mm\;day^{-1}$, respectively in May, which were greater than other months (p<0.05). The return flow ratio of the RFI and the RFD were the greatest in July (34.6%) and May (72.3%), respectively. The daily AWS was closely correlated with the RFD (correlation coefficients of 0.76~0.86) in except for July with, while correlation coefficient with the RFI were 0.56 and 0.42 in June and July, respectively (p<0.01). The total irrigation return flow was 1,965 mm in 2011, and 1,588 mm in 2012, resulting in total return flow ratio of 84.6% and 79.1%, respectively. This results indicate that substantial amounts of agricultural water were returned to streams as irrigation return flow. Thus, irrigation return flow should be fully considered into the agricultural water resources planning in Korea.

A Decision Support System for Paddy Rice Irrigation

  • Park, Seung-Woo;Chung, Ha-Woo;Kim, Byeong-Jin;Koo, Jee-Hee
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.99-113
    • /
    • 1991
  • Integrated irrigation management system (IIMS) that is incorporated with a microcomputer-based decision support system (DSS) has been developed and applied to paddy rice irrigation systems management. The system hardwares consist of field data acquisition units, data transmission units, central data processing units, and printing and displaying units. Ridld data to be collected include incremental rainfall, streamflow and reservoir water levels, and water levels at several irrigation canal sections within an irrigation sidtricts. The softwares are to process field data, real-time forecasting, irrigation control data, and decision variables from data-base and simulation model subsystems. And the user-interface subsystems are incorporated to present the water system operators and managers the results from data and model sugsystems. User-friendly menu with animated graphic modules are adopted to help understand irrigation controls for the district. This paper issues the overal descriptions of DSS as applied to Anjuk irrigation district. The details of major model components for the irrigation controls are presented along with real-time data collection systems. The potentials of DSS have been appraised very practical and promising for better irrigation system operation and management.

  • PDF

Estimation of Return Flow Rate of Irrigation Water in Daepyeong Pumping District (대평 양수장 지구의 농업용수회귀율 추정)

  • Kim, Tai-Cheol;Lee, Ho-Choun;Moon, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • Return flow rate of irrigation water was estimated by water balance method. Daepyeong pumping district to irrigate 75.8 ha of rice paddy in the Geum river basin was selected to install gauging instruments to collect data such as weather, water levels, infiltration rate and evapotranspiration during irrigation season (May 27 to Sept. 20) in 2003 and 2004. Irrigation and drainage discharge were calculated from the rating curve and evapotranspiration was estimated both by the modified Penman formula and by the lysimeter. The results were as followed : 1. Total amounts of pumping water during irrigation season were $1,076,000\;m^3$ in 2003 and $1,848,000\;m^3$ in 2004. Total amounts of rainfall were 1336.0mm and 1003.0mm respectively during the irrigation season in 2003 and 2004. 2. It was surveyed that the amount of infiltration was 196.5 mm (2.2 mm/day). The gauged evapotranspiration was 311.0 mm (3.5 mm/day) and the calculated evapotranspiration was 346.0 mm (3.9 mm/day) during irrigation period in 2003. It was surveyed that the amount of infiltration was 169.9 mm (2.4 mm/day). The amount of gauged evapotranspiration was 377.3 mm (5.3 mm/day) and the calculated evapotranspiration was 454.5 mm (6.6 mm/day) during irrigation period in 2004. 3. The rates of quick and delayed return flow were 52.4 % and 17.7 % respectively, and so return flow rate was 70.1 % in 2003. The rates of quick and delayed return flow were 45.4 % and 16.1 % respectively, and so return flow rate was 61.5 % in 2004. It means that average return flow rate in the Daepyeong pumping district was assumed to be 65 %.

Measurement of Irrigation water-reuse ratio for pumped storage system (양수저류시스템의 반복이용률 측정)

  • Park, Ji-Sung;Kim, Young-Hwa;Lee, Young-Il;Kim, Pil-Dong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.295-298
    • /
    • 2003
  • In this study, It classified type of irrigation water development in islands district. As result, the types which were type of reservior, fleshwater lake, pumped storage, ets. Most of islands district has developed reuse irrigation system as a pumped storage system. But, Irrigation water-reuse ratio doesn't define a basis clearly and the value of measurement for water-reuse ratio doesn't exist so far. so, we measured Irrigation water-reuse to clarify for water-reuse ratio in a pumped storage system.

  • PDF