• Title/Summary/Keyword: irreversible inactivation

Search Result 19, Processing Time 0.025 seconds

Inactivation Study of Pyridine-Linked Dehydrogenases by $N^1$-Alkylnicotinamide Chlorides ($N^1$-Alkylnicotinamide Chloride 유도체에 의한 탈수소 효소의 불활성화에 관한 연구)

  • Kim Soo-Ja;Lee Hyun Jae
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.406-416
    • /
    • 1976
  • A series of $N^1$-alkylnicotinamide chlorides, $N^1$-methyl-to $N^1$-dodecylnicotinamides inclusive were studied with rabbit muscle L-${\alpha}$-glycerophosphate dehydrogenase to investigate the possibility of reversible and irreversible inactivation of the pyridine-linked dehydrogenases by the coenzyme-competitive inhibitor derivatives. The inhibition of the enzyme by $N^1$-alkylnicotinamide chlorides was demonstrated to be reversible at the dilute concentration of the inhibitors but this reversible inhibition was found to be followed by an irreversible time-dependent inactivation measuable at high concentrations of the inhibitors. The properties of this time-dependent inactivation were discussed on the basis of the denaturation of the enzyme by the binding of small micelle-like structures formed at higher concentrations of the inhibitors.

  • PDF

Conformational Lock and Dissociative Thermal Inactivation of Lentil Seedling Amine Oxidase

  • Moosavi-Nejad, S. Zahra;Moosavi-Movahedi, Ali-Akbar;Rezaei-Tavirani, Mostafa;Floris, Giovanni;Medda, Rosaria
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.167-172
    • /
    • 2003
  • The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between $47-60^{\circ}C$. The thermal inactivation curves were not linear at 52 and $57^{\circ}C$; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to $57^{\circ}C$. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.

The Mitochondrial Tricarboxylate Carrier of Silver Eel: Chemical Modification by Sulfhydryl Reagents

  • Capobianco, Loredana;Impagnatiello, Tecla;Ferramosca, Alessandra;Zara, Vincenzo
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.515-521
    • /
    • 2004
  • The tricarboxylate (or citrate) carrier was purified from eel liver mitochondria and functionally reconstituted into liposomes. Incubation of the proteoliposomes with various sulfhydryl reagents led to inhibition of the reconstituted citrate transport activity. Preincubation of the proteoliposomes with reversible SH reagents, such as mercurials and methanethiosulfonates, protected the eel liver tricarboxylate carrier against inactivation by the irreversible reagent N-(1-pyrenyl)maleimide (PM). Citrate and L-malate, two substrates of the tricarboxylate carrier, protected the protein against inactivation by sulfhydryl reagents and decreased the fluorescent PM bound to the purified protein. These results suggest that the eel liver tricarboxylate carrier requires a single population of free cysteine(s) in order to manifest catalytic activity. The reactive cysteine(s) is most probably located at or near the substrate binding site of the carrier protein.

Inactivation of Thermolysin with N-Chloroacetyl-N-hydroxy-β-L-phenylalanine N-methylamide

  • 진용화;Kim, Dong H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.777-780
    • /
    • 1999
  • N-Chloroacetyl-N-hydroxy- β-Phe-NHMe and N-chloroacetyl-N-hydroxy-α-Phe-OMe were designed, synthe-sized and evaluated as irreversible inhibitors of thermolysin, a representative zinc protease. Analysis of kinetic data of the enzymic activity of thermolysin in the presence of these inhibitors revealed that they are indeed potent inactivators of thermolysin having the k(inact)/K(I ) values of 3.06 and 0.05 M (-1) s(-1) , respectively. We have established that the inhibitory activity of N-chloroacetyl-N-hydroxy-β-Phe-NHMe stems mainly from the (R)-enantiomer that belongs to the "L" series. The (R)-enantiomer is also responsible for the inactivation in the case of N-chloroacetyl-N-hydroxy-α-Phe-OMe, but this enantiomer belongs to the "D"-series.

Phytol, SSADH Inhibitory Diterpenoid of Lactuca sativa

  • Bang, Myun-Ho;Choi, Soo-Young;Jang, Tae-O;Kim, Sang-Kook;Kwon, Oh-Shin;Kang, Tae-Cheon;Won, Moo-Ho;Park, Jin-Seu;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.643-646
    • /
    • 2002
  • The succinic semialdehyde dehydrogenase (SSADH) inhibitory component was isolated from the EtOAc fraction of Lactuca sativa through repeated column chromatography; then, it was identified as phytol, a diterpenoid, based on the interpretation of several spectral data. Incubation of SSADH with the phytol results in a time-dependent loss of enzymatic activity, suggesting that enzyme modification is irreversible. The inactivation followed pseudo-first-order kinetics with the second-rate order constant of $6.15{\times}10^{-2}mM^{-1}min^{-1}.$ Complete protection from inactivation was afforded by the coenzyme $NAD^{+}$, whereas substrate succinic semialdehyde failed to prevent the inactivation of the enzyme; therefore, it seems likely that phytol covalently binds at or near the active site of the enzyme. It is postulated that the phytol is able to elevate the neurotransmitter GABA levels in central nervous system through its inhibitory action on one of the GABA degradative enzymes, SSADH.

Studies on the Mechanism of Action of the Gastric $H^{+}$+$K^{+}$ ATPase Inhibitor KH 3218

  • Cheon, Hyae-Cyeong;Kim, Hyo-Jung;Yum, Eul-Kgun;Cho, Sung-Yun;Kim, Do-Yeob;Yang, Sung-Il
    • Biomolecules & Therapeutics
    • /
    • v.3 no.3
    • /
    • pp.205-209
    • /
    • 1995
  • The novel compound KH 3218 was synthesized and evaluated for its ability to inhibit the gastric H$^{+}$$K^{+}$ ATPase activity in vitro as well as to lessen gastric acid secretion in vivo. KH 3218 inhibited rabbit gastric H$^{+}$$K^{+}$ ATPase in a concentration and time dependent manner. $IC_{50}$/ value was estimated to be about 15 $\mu$M. The inhibition of the H$^{+}$$K^{+}$ ATPase by KH 3218 was blocked by sulfhydryl reducing agents, dithiothreitol or $\beta$-mercaptoethanol. The inhibition of the enzyme was not reversible by 50 fold dilution of the incubation mixtures, suggesting the irreversible nature of the inactivation. In the pylorus-ligated rift, KH 3218 reduced the total acid output as compared with the control. In addition, KH 3218 was capable of inhibiting H. pylori urease activity. These data suggest that KH 3218 is a potent inhibitor for H$^{+}$$K^{+}$ ATPase activity as well as for gastric acid secretion, and has a potential to be developed as a novel antiulcer agent.

  • PDF

Acid Stability of Anti-Helicobacter pyroli IgY in in Aqueous Polyol Solution

  • Lee, Kyong-Ae;Chang, Sung-Keun;Lee, Yoon-Jin;Lee, Jong-Hwa;Koo, Nan-Sook
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.488-493
    • /
    • 2002
  • IgY was separated from a hen's egg yolk that was immunized with Helicobacter pyroli. The anti-H. pyroli IgY activity at acidic pH and the suppressive effect of polyol on acid-induced inactivation of IgY were investigated. Sorbitol and xylitol were used as polyols. IgY was quite stable at pH 5~7. Irreversible inactivation of IgY was observed at pH below 4, and proceeded rapidly at pH below 3. The acid stability of IgY was enhanced in the presence of 30% sorbitol or above. In a 50% aqueous sorbitol solution, an acid-induced inactivation was almost completely suppressed at pH 3. However, the improvement of IgY activity was not observed in the aqueous xylitol solution. IgY showed almost the same activity as native IgY when sucrose was substituted for sorbitol. On the other hand, the xylitol replacement with sucrose did not enhance the acid stability of IgY. The acid-induced inactivation of IgY was related to tryptophyl fluorescence. Fluorescence emission spectra suggested that structural changes near the tryptophan residues may occur under acidic conditions. An increase in sorbitol concentration induced a blue shift. The fluorescence emission of IgY in a 50% sorbitol solution had a peak at 330 nm, which was the same emission peak that was exhibited by native IgY. Sorbitol could, therefore, be used as a good stabilizer of IgY under acidic conditions.

Characterization of Aspartate Aminotransferase Isoenzymes from Leaves of Lupinus albus L. cv Estoril

  • Martins, Maria Luisa Louro;De Freitas Barbosa, Miguel Pedro;De Varennes E Mendonca, Amarilis Paula Alberti
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.220-227
    • /
    • 2002
  • Two aspartate aminoransferase (EC 2.6.1.1) isoenzymes (AAT-1 and AAT-2) from Lupinus albus L. cv Estoril were separated, purified, and characterized. The molecular weight, pI value, optimum pH, optimum temperature, and thermodynamic parameters for thermal inactivation of both isoenzymes were obtained. Studies of the kinetic mechanism, and the kinetics of product inhibition and high substrate concentration inhibition, were performed. The effect of some divalent ions and irreversible inhibitors on both AAT isoenzymes was also studied. Native PAGE showed a higher molecular weight for AAT-2 compared with AAT-1. AAT-1 appears to be more anionic than AAT-2, which was suggested by the anion exchange chromatography. SDS-PAGE showed a similar sub-unit molecular weight for both isoenzymes. The optimum pH (between 8,0 and 9.0) and temperature ($60-65^{\circ}C$) were similar for both isoenzymes. In the temperature range of $45-65^{\circ}C$, AAT-2 has higher thermostability than AAT-1. Both isoenzymes showed a high affinity for keto-acid substrates, as well as a higher affinity to aspartate than glutamate. Manganese ions induced an increase in both AAT isoenzymes activities, but no cooperative effect was detected. Among the inhibitors tested, hydroxylamine affected both isoenzymes activity by an irreversible inhibition mechanism.

Inhibition of 100 kDa Cytosolic Phospholipase $A_2$ by Hydrolysable Tannin, 1-desgalloylrugosin-F (가수분해형 탄닌 1-desgalloylrugosin-F에 의한 100 kDa 세포질 포스포리파아제 $A_2$ 활성의 억제효과)

  • 진미령;신혜숙;정광묵;강미선;이민원;김대경
    • YAKHAK HOEJI
    • /
    • v.44 no.1
    • /
    • pp.47-51
    • /
    • 2000
  • To examine whether DGRF inhibits $cPLA_2$ activity in vitro, we purified a 100 kDa $cPLA_2$enzyme from porcine spleen and performed an inhibition study at two concentrations of 5.0 and 50.0 $\mu$M 1-stearoyl-2-[1-$^{l4C}$ ]arachidonoyl-sn -glycero-3-phosphocholine as a substrate to rule out an apparent inhibition due to "substrate depletion". Here we reported that DGRF inhibited $cPLA_2$activity with $ID_{50}$ of 3.2 $\mu$M and virtually complete inactivation of the enzyme occurred at 60 $\mu$M. Interaction experiment between enzyme protein and inhibitor by ultrafiltration method indicated that 1-desgalloylrugosin-F inactivates $cPLA_2$enzyme by an irreversible mechanism.

  • PDF