• Title/Summary/Keyword: irreducible cubic polynomial

Search Result 4, Processing Time 0.015 seconds

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS

  • Ahn, Youngwoo;Kim, Kitae
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.263-272
    • /
    • 2011
  • In the paper [1], an explicit correspondence between certain cubic irreducible polynomials over $\mathbb{F}_q$ and cubic irreducible polynomials of special type over $\mathbb{F}_{q^2}$ was established. In this paper, we show that we can mimic such a correspondence for quintic polynomials. Our transformations are rather constructive so that it can be used to generate irreducible polynomials in one of the finite fields, by using certain irreducible polynomials given in the other field.

CERTAIN CUBIC POLYNOMIALS OVER FINITE FIELDS

  • Kim, Hyung-Don;Kim, Jae-Moon;Yie, Ik-kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • Motivated by XTR cryptosystem which is based on an irreducible polynomial $x^3-cx^2+c^px-1$ over $F_{p^2}$, we study polynomials of the form $F(c,x)=x^3-cx^2+c^qx-1$ over $F_{p^2}$ with $q=p^m$. In this paper, we establish a one to one correspondence between the set of such polynomials and a certain set of cubic polynomials over $F_q$. Our approach is rather theoretical and provides an efficient method to generate irreducible polynomials over $F_{p^2}$.

A Method for Distinguishing the Two Candidate Elliptic Curves in the Complex Multiplication Method

  • Nogami, Yasuyuki;Obara, Mayumi;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2006
  • In this paper, we particularly deal with no $F_p$-rational two-torsion elliptic curves, where $F_p$ is the prime field of the characteristic p. First we introduce a shift product-based polynomial transform. Then, we show that the parities of (#E - 1)/2 and (#E' - 1)/2 are reciprocal to each other, where #E and #E' are the orders of the two candidate curves obtained at the last step of complex multiplication (CM)-based algorithm. Based on this property, we propose a method to check the parity by using the shift product-based polynomial transform. For a 160 bits prime number as the characteristic, the proposed method carries out the parity check 25 or more times faster than the conventional checking method when 4 divides the characteristic minus 1. Finally, this paper shows that the proposed method can make CM-based algorithm that looks up a table of precomputed class polynomials more than 10 percent faster.

  • PDF

Ring of Four Almonds and the Omar Khayyam's Triangle in Islamic Art Design (이슬람 예술 디자인에서 회전하는 알몬드와 오마르 하얌의 삼각형)

  • Park, Jeanam;Park, Mingu
    • Journal for History of Mathematics
    • /
    • v.32 no.4
    • /
    • pp.159-173
    • /
    • 2019
  • In this paper, we examine the brief history of the ring of four almonds regarding Mesopotamian mathematics, and present reasons why the Omar Khayyam's triangle, a special right triangle in a ring of four almonds, was essential for artisans due to its unique pattern. We presume that the ring of four almonds originated from a point symmetry figure given two concentric squares used in the proto-Sumerian Jemdet Nasr period (approximately 3000 B.C.) and a square halfway between two given concentric squares used during the time of the Old Akkadian period (2340-2200 B.C.) and the Old Babylonian age (2000-1600 B.C.). Artisans tried to create a new intricate pattern as almonds and 6-pointed stars by subdividing right triangles in the pattern of the popular altered Old Akkadian square band at the time. Therefore, artisans needed the Omar Khayyam's triangle, whose hypotenuse equals the sum of the short side and the perpendicular to the hypotenuse. We presume that artisans asked mathematicians how to construct the Omar Khayyam's triangle at a meeting between artisans and mathematicians in Isfahan. The construction of Omar Khayyam's triangle requires solving an irreducible cubic polynomial. Omar Khayyam was the first to classify equations of integer polynomials of degree up to three and then proceeded to solve all types of cubic equations by means of intersections of conic sections. Omar Khayyam's triangle gave practical meaning to the type of cubic equation $x^3+bx=cx^2+a$. The work of Omar Khayyam was completed by Descartes in the 17th century.