• Title/Summary/Keyword: irradiated teas

Search Result 5, Processing Time 0.022 seconds

Physical and Microbiological Approach in Proving the Identity of Gamma-irradiated Different Teas

  • Kausar, Tusneem;Kim, Byeong-Keun;Kim, Dong-Ho;Kwon, Joong-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Photostimulated luminescence (PSL), thermoluminescence (TL), electron spin resonance (ESR), and direct epiflourescent filter technique/aerobic plate count (DEFT/APC) were applied to detect dried green, black, and oolong teas irradiated between 0-10 kGy. Teas irradiated at 2.5 kGy and higher showed over 5000 photon counts/60 sec, while non-irradiated teas yielded 650-1000 photon counts/60 sec. TL glow curves for minerals separated from teas were detected at about $300^{\circ}C$ with low intensity in non-irradiated samples, whereas around $150^{\circ}C$ with high intensity in all irradiated samples. Ratio of $TL_1/TL_2$ based on re-irradiation step, showing lower than 0.1 and higher than 1.44 for non-irradiated and irradiated samples, respectively, enhanced reliability of TL results. ESR measurements for irradiated teas showed signals specific to irradiation. Log DEFT/APC ratio increased with irradiation dose; this result could be applied to identify irradiated tea samples.

Properties of Pulsed Photostimulated Luminescence and Thermoluminescence for Detection of Gamma-Irradiated Teas during Storage

  • Kausar, Tusneem;Kim, Byeong-Keun;Yang, Jae-Seung;Byun, Myung-Woo;Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.227-231
    • /
    • 2004
  • Green, black and oolong teas were irradiated by $^{60}$ Co-gamma rays (0~10 kGy) and were investigated for detection of irradiation treatment using pulsed photostimulated luminescence (PPSL) and thermoluminescence (TL) during storage. Teas irradiated at 2.5 kGy or more showed a photon count of greater than 5000 counts/60 sec while the non-irradiated yielded only 650~1000 count/60 sec. Correlation coefficients between irradiation dose and photon counts/60 sec were 0.8951, 0.7934 and 0.9007 for green, black and oolong teas, respectively. The TL glow curves for minerals isolated from the non-irradiated teas were situated at about 30$0^{\circ}C$ with a low intensity, but for irradiated samples were approximately 15$0^{\circ}C$ with a high intensity. The TL ratios (TL$_1$/TL$_2$), calculated from values after initial radiation and then after re-irradiation of the teas, were below 0.1 for the non-irradiated samples and higher than 1.44 for all irradiated samples, enhanced the reliability of the identification results for TL. The signal intensity of PPSL and TL for irradiated teas decreased with the lapse of post-irradiation storage time at room temperature but was still distinguishable from that of the non-irradiated samples even after one year.

Detection of Radiation-Induced Hydrocarbons in Green, Black and Oolong Teas

  • Kausar, Tusneen;Lee, Jung-Eun;Noh, Jung-Eun;Kwon, Young-Ju;Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.222-226
    • /
    • 2004
  • Hydrocarbons induced by gamma-irradiation of green, black, and oolong teas were analyzed to determine whether the hydrocarbons can be used as markers for detecting post-irradiation of these teas. The samples were irradiated at 0, 2.5, 5, 7.5, and 10 kGy. Detection was attempted by extracting fat from the teas, separation of hydrocarbons with florisil column chromatography, and identification of hydrocarbons by gas chromatography-mass spectroscopy (GC-MS). Concentration of hydrocarbons increased with the irradiation dose. The major hydrocarbons in irradiated green, black, and oolong teas were 1-tetradecence (14:1), pentadecane (15:0), 1,7-hexadecadiene (16:2), 1-hexadecene (16:1), 8-heptadecene (17:1), and heptadecane (17:0). Radiation-induced hydrocarbons in teas were 1,7-hexadecadiene and 8-heptadecene. These compounds were not detected in non-irradiated samples, so the hydrocarbons (16:2, 17:1) can be used as markers for detecting post-irradiation of the teas. Furthermore, detection of hydrocarbons after 12 months storage at room temperature remains a suitable method for identifying irradiated teas.

Effect of Electron-Beam Irradiation on the Characteristics of Green Tea (Camellia sinensis L.) (전자빔 조사가 녹차 품질 특성에 미치는 영향)

  • Park, Ji-Hee;Lee, Jung-Min;Lee, Seung-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.774-779
    • /
    • 2006
  • The commercial green tea leaves were packaged with polyethylene film and irradiated by electron beam at doses of 0, 5, 10, 20, and 30 kGy. After irradiation, green teas were prepared by soaking the leaves in water (1 g/100 mL) at $75^{\circ}C$ for 10 min, and the physicochemical characteristics of green tea were determined. Electron beam irradiation decreased total phenol contents (TPC), total flavanol contents (TFC), ascorbic acid contents (AAC). Irradiation at dose of 20 kGy decreased TPC, TFC, and AAC from 223.46, 32.50, and 6.03 mg/g to 202.88, 31.16, and 5.57 mg/g, respectively, compared with non irradiated control. Electron beam irradiation also decreased catechins, caffeine, and nitrite scavenging activity of green tea. However, the changes of overall color and radical scavenging activity of irradiated green tea were negligible.

Evaluation on the radioprotective effect of Korean favorite teas (한국인 기호 차류의 방사선 장해 경감효과 평가)

  • Kim, Se-Ra;Lee, Hae-June;Oh, Heon;Lee, Jin-Hee;Kim, Hu-Kyung;Kim, Tae-Hwan;Jo, Sung-Kee;Kim, Sung-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.4
    • /
    • pp.475-483
    • /
    • 2002
  • We performed this study to determine the effect of Korean favorite teas (green tea, ginseng tea, coffee and barley tea) on jejunal crypt survival, endogenous spleen colony formation and apoptosis in jejunal crypt cells of mice irradiated with high and low dose of ${\gamma}$-radiation. Jejunal crypts were protected by pretreatment of green tea (P.O.: 1.25% water extract, for 7 days before irradiation., I.P.: 50 mg/kg of body weight, at 12 and 36 hours before irradiation, p<0.01) or ginseng (I.P.: 50 mg/kg of body weight, at 12 and 36 hours before irradiation, p<0.05). Green tea (p<0.05) or ginseng (p<0.05) administration before irradiation (I.P. at 12 and 36 hours before irradiation) resulted in an increase of t formation of endogenous spleen colony. The frequency of radiation-induced apoptosis was also reduced by pretreatment of green tea (P.O.: p<0.005, I.P.: p<0.05), pretreatment of ginseng (P.O.: p<0.005, I.P.: p<0.005) or posttreatment of ginseng (I.P.: 50 mg/kg of body weight, at 30 minutes after irradiation, p<0.05). Treatment with coffee or barley tea showed no significant modifying effects on the radiation-induced damages. These results indicated that green tea and ginseng might be a useful radioprotector, especially since it is a relatively nontoxic natural product. Further studies are needed to characterize better the promotion nature of green tea, ginseng and its components.