• Title/Summary/Keyword: iron-nitride

Search Result 35, Processing Time 0.025 seconds

Formation ani Magnetic Properties of Iron-Nitrides due to Mechanical Alloying in $NH_3$ gas Atomosphere ($NH_3$ 가스분위기에서 Mechanical Alloying에 의한 질화철의 합성 및 자성)

  • Lee, Chung-Hye;Koyano, Tomas;So, Byeong-Moon;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1333-1335
    • /
    • 1994
  • The nitrification of pure iron powders is found to occur even at room temperature by high energy ball milling in $NH_3$ gas atmosphere. The powders of metastable iron nitrides ($0<at.%N{\le}23.3$) thus produced are identified as the super-saturated bee structure for the N content below 14.9 at.%N and the high temperature phase of the hcp structure above 19.4 at.%N. The atomic volume of Fe in the bcc phase is found to be smaller than that of the N-martensite reported in the literature. Magnetization at room temperature gradually decreases with increasing the N concentration in contrast to the enhancement reported for the bet nitrides. Neutron diffraction experiment also provide detailed information about the local structure surrounding the nitrogen atom. The coordination number of Fe atom around a nitrogen atom for the iron nitride containing 9.5 at.%N turns out to be 3.9 atoms.

  • PDF

OBSERVATION OF THE DOMAIN STRUCTURES IN SOFT MAGNETIC ${(Fe_{97}Al_3)}_{85}N_{15}/Al_2O_3$ MULTILAYERS

  • Stobiecki, T.;Zoladz, M.;Roell, K.;Maass, W.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.14-15
    • /
    • 2002
  • Iron nitride alloy films prepared in the form of laminated ${(Fe_{97}Al_3)}_{85}N_{15}/Al_2O_3$ multilayers (Ml's) due to excellent soft magnetic properties and high saturation magnetization [1, 2] are very promising materials for poles and shields in ultra high density thin film heads. The present work concerns the ferromagnetic (FM) coupling effect as a function of the thickness of $Al_2O_3$ spacers by analysis of the magnetic domain structure.

  • PDF

Synthesis of iron nitrides powders subjected to mechanical alloying (기계적 합금화 방법에 의한 질화철 분말의 합성)

  • 이충효
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.516-520
    • /
    • 1999
  • Mechanical alloying (MA) by planetary type ball mill of pure iron powders was carried out under the ammonia gas atmosphere. The powders of metastable iron nitrides was synthesized up to the nitrogen content of 23 at% N. The observed phases are identified as the super-saturated bcc solid solution for the nitrogen concentration below 14.5 at% N and the non-equilibrium hcp phase stable at high temperature for 20.8 at.% N. Magnetization of Fe-N powders gradually decreases with increasing the N concentration on contrast to the enhancement reported for the bct iron nitrides. Neutron diffraction experiments also provide detailed information concerning the local atomic structure surrounding the nitrogen atoms. The coordination number of Fe atom around a nitrogen atom for the iron nitride containing 9.5 at% N turns out to be 3.9 atoms. This suggests that a nitrogen atom is situated at a center of the tetrahedron formed by iron atoms.

  • PDF

FORMATION OF IRON SULFIDE BY PLASMA-NITRIDING USING SUBSIDIARY CATHODE

  • Hong, Sung-Pill;Urao, Ryoichi;Takeuchi, Manabu;Kojima, Yoshitaka
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.615-620
    • /
    • 1996
  • Chromium-Molybdenum steel was plasma-nitrided at 823 K for 10.8 ks in an atmosphere of 30% $N_2$-70% $H_2$ gas under 665 Pa without and with a subsidiary cathode of $MoS_2$ to compare ion-nitriding and plasma-sulfnitriding using subsidiary cathode. When the steel was ion-nitrided without $MoS_2$, iron nitride layer of 4$\mu\textrm{m}$ and nitrogen diffusion layer of 400mm were formed on the steel. A compound layer of 15$\mu\textrm{m}$ and nitrogen diffusion layer of 400$\mu\textrm{m}$ were formed on the surface of the steel plasma-sulfnitrided with subsidiary cathode of $MoS_2$. The compound layer consisted of FeS containing Mo and iron nitrides. The nitrides of $\varepsilon$-$Fe_2$, $_3N$ and $\gamma$-$Fe_4N$ formed under the FeS. The thicker compound layer was formed by plasma-sulfnitriding than ion-nitriding. In plasma-sulfnitriding, the surface hardness was about 730 Hv. The surface hardness of the steel plasma-sulfnitrided with $MoS_2$ was lower than that of ion-nitrided without $MoS_2$. This may be due to the soft FeS layer formed on the surface of the plasma-sulfnitrided steel.

  • PDF

A First Principles Calculation of the Coherent Interface Energies between Group IV Transition Metal Nitrides and bcc Iron (IV족 천이금속 질화물과 bcc Fe간 계면 에너지의 제일원리 연구)

  • Chung, Soon-Hyo;Jung, Woo-Sang;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.473-478
    • /
    • 2006
  • The coherent interface energies and misfit strain energies of Fe/XN (X=Ti, Zr, Hf) systems were calculated by first principles method. The interface energies in Fe/TiN, Fe/ZrN and Fe/HfN systems were 0.343, 0.114, and 0.030 $J/m^2$, respectively. Influence of bond energy was estimated using the discrete lattice plane/nearest neighbor broken bond(DLP/NNBB) model. It was found that the dependence of interface energy on the type of nitride was closely related to changes of the bond energies between Fe, X and N atoms before and after formation of the Fe/XN interfaces. The misfit strain energies in Fe/TiN, Fe/ZrN, and Fe/HfN systems were 0.239, 1.229, and 0.955 eV per 16 atoms(Fe; 8 atoms and XN; 8 atoms). More misfit strain energy was generated as the difference of lattice parameters between the bulk Fe and the bulk XNs increased.

The Characterization of Metal Silicon and Compacts for the Nitridation (질화반응용 금속규소 및 그 Compacts의 Characterization(Densification of Silocon Nitride 1보))

  • 박금철;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.3
    • /
    • pp.211-216
    • /
    • 1983
  • This work aims at characterizing silicon grains and its compacts. In order to remove iron silicon grains were washed with 5N hydrochloride at 60-7$0^{\circ}C$ for 170 hrs, and then followed the chemical analysis by atomic absorption spectrophotometer X-ray diffraction analysis SEM observation and specific surface area determination by B. E. T. Mixtures of graded silicon particles with two or three different sizes were made into packings by mechanical vibration. The mixtures were used to make compacts with 10 mm in diameter and 70mm in length by isostatically pressing at 1, 208 kg/$cm^2$ (20 kpsi) and 4, 255kg/$cm^2$ (60 kpsi) respectively. Bulk densities of packings and compacts were measured. A slip made of magnesium nitrate solution and fine silicon particles was spray-dried and then decomposed at 30$0^{\circ}C$ for the purpose of coating the uniform layer of magnesium oxide on the surface of particles. The results obtained are as follows: (1) About two thirds of iron content could be removed from silicon by washing silicon powders with hydrochloride. (2) Uniform layer of magnesium oxide on the surface of silicon could be prepared by spray-drying suspension and by decomposing it. (3) B. E. T. specific surface area of fine silicon particles was 2, 826.753$m^3$/kg. (4) In the binary system with two sizes of 40-53$\mu\textrm{m}$ particles and <10$\mu\textrm{m}$ particles the maximum bulk density of packing was 55% of theoretical value and that of compacts made at the pressure of 4, 255 kg./$cm^2$ (60 kpsi) was 73% of theoretical value. (5) In the ternary system with three sizes the maximum bulk density of packing was 1.43 g/$cm^3$and that of compacts was 1.80g/$cm^3$which is equivalent to 77.6% of theoretical value. The composition of the closest compact was consisted of 50% of 40-53$\mu\textrm{m}$ particles 20% of 10-30$\mu\textrm{m}$ particles and 30% of <10$\mu\textrm{m}$ parti-cles.

  • PDF

Research trend in Fabrication of Metastable-phase Iron Nitrides for Hard Magnetic Applications (준안정상 기반의 질화철계 영구자석소재 제조연구동향)

  • Kim, Kyung Min;Lee, Jung-Goo;Kim, Kyung Tae;Baek, Youn-Kyoung
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.146-155
    • /
    • 2019
  • Rare earth magnets are the strongest type of permanent magnets and are integral to the high tech industry, particularly in clean energies, such as electric vehicle motors and wind turbine generators. However, the cost of rare earth materials and the imbalance in supply and demand still remain big problems to solve for permanent magnet related industries. Thus, a magnet with abundant elements and moderate magnetic performance is required to replace rare-earth magnets. Recently, $a^{{\prime}{\prime}}-Fe_{16}N_2$ has attracted considerable attention as a promising candidate for next-generation non-rare-earth permanent magnets due to its gigantic magnetization (3.23 T). Also, metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ exhibits high tetragonality (c/a = 1.1) by interstitial introduction of N atoms, leading to a high magnetocrystalline anisotropy constant ($K_1=1.0MJ/m^3$). In addition, Fe has a large amount of reserves on the Earth compared to other magnetic materials, leading to low cost of raw materials and manufacturing for industrial production. In this paper, we review the synthetic methods of metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ with film, powder and bulk form and discuss the approaches to enhance magnetocrystalline anisotropy of $a^{{\prime}{\prime}}-Fe_{16}N_2$. Future research prospects are also offered with patent trends observed thus far.

Electronic States Calculation of Fe4N by DV-Xα cluster calculation (DV-Xα 클러스터 계산법에 의한 Fe4N의 전자상태계산)

  • Song, Dong-Won;Lee, In-Seop;Bae, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.44-47
    • /
    • 2002
  • DV(Discrete Variation)-X${\alpha}$ cluster calculation was employed to calculate the electronic states of ${\gamma}'- Fe_4N$ which was one of iron nitride phases synthesized from plasma ion nitriding to improve surface hardness and wear resistance. The result of calculated electron density of states for Fe was similar to the result of band calculation. The cluster used for calculation of electronic states of ${\gamma}'-Fe_4N$ was based on $Fe_{14}N$ cluster which comprises 15 atoms. Finally the electronic states of ${\gamma}'- Fe_4N$ such as net-charge, band order, energy level, electron wave-function, and contour map for electron density were derived by the calculation.

The Thermal and Mechanical Properties of Epoxy Composites Including Boron Carbide Surface Treated with Iron Oxide and Tungsten (철산화물과 텅스텐으로 표면 처리된 보론카바이드를 포함하는 에폭시 조성물의 열적·기계적 물성)

  • Kim, Taehee;Lee, Wonjoo;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.113-117
    • /
    • 2018
  • Boron carbide is lower in hardness than diamond or boron nitride but has a hardness of more than 30 GPa and is used for manufacturing tank armors and ammo shells due to its high hardness. It is also used as a neutron absorber due to its ability to absorb neutrons, which is increasing its use in nuclear power projects. Neutrons have no interaction with electrons and are known to pass through the material without interactions. Along with boron carbide, the atoms with high interaction with neutrons are hydrogen, and high hydrogen concentration polyesters and epoxy polymers including boron are used as materials for manufacturing products for nuclear power generation waste. In this paper, the surface of boron carbide is treated with iron oxide and tungsten to improve interaction between modified boron carbide and epoxy polymer. XRD and XPS were used to confirm that iron oxide and tungsten are well attached on the surface of boron carbide, respectively. The mechanical strength of the surface treated boron carbide was measured by a universal testing machine (UTM) and the dynamic characteristics of the cured product were observed by using a dynamic analyzer (DMA).