• Title/Summary/Keyword: iron-core

Search Result 434, Processing Time 0.022 seconds

Studdy for Force Ripple Suppression of the Iron Core Linear Motors (철심형 리니어모터의 추력 리플 억제에 관한 연구)

  • 송창규;김정식;김경호;박천홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.358-362
    • /
    • 2004
  • Higher productivity requires high-speed motion of machine tool axes. The iron core linear DC motor (LDM) is widely accepted as a viable candidate for high-speed machine tool feed unit. LDM, however, has two inherent disturbance force components, namely cogging and thrust force ripple. These disturbance forces directly affect the tracking accuracy of the feeding system and must be eliminated or reduced. In order to reduce motor ripple, this research adapted the feedforward compensation method and neural network control. Experiments carried out with the linear motor test setup show that these control methods are effective in reducing motor ripple.

  • PDF

Development of High Thrust Linear Motor for Machine Tool (공작기계용 고추력 리니어모터 개발)

  • 정재한;박재한;정시욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.363-368
    • /
    • 2004
  • Due to various advantages over the conventional linear motion device such as ball-screw, linear motors have been used in wide variety of industrial applications for years. Driven by increased demand for precision machine tools, the importance of high positioning accuracy, high stiffness and high thrust are greatly increasing. The merits of linear motor are high speed, high acceleration and good positioning accurcy. In addition, Linear motor for high quality machine tool call for high thrust, high stiffness. In this paper, thrust ripple, detent force and thermal behavior are considered for the development of high performance linear motor whose thrust is up to 10,000N. This paper presents a comprehensive study for an iron core type linear motor characteristics that include the influence of PM position on thrust, thrust ripple by detent force and motor dynamics as well.

  • PDF

Design and Analysis of Permanent Magnet Type LDM for Implementation (계기용 영구자석형 LDM의 설계제작 및 기본특성 연구)

  • Kim, Yong;Baek, Soo-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.56-62
    • /
    • 1999
  • This paper is concerned with the design and the construction of a moving magnet type linear DC motor(MM type LDM) for instrumentation. A mathematical model for the design of a LDM is developed and a permeance method is used to calculate the effective flux density in the air gap. The flux distribution in the air gap is analyzed and the width of iron core should be determined in order not to saturate the iron core by caluclating maxmum flux density. The design data culculated by a permeance method are compared with the analyzed results using FEM(MAXWELL 2D). The errors between two results are corrected. The tested LDM is constructed using the corrected design data. The results of experiment for thrust characteristics are compared with simulation.

  • PDF

Preparation and Characterization of Microcapsule for non-aqueous dyeing (비수계 염색용 마이크로캡슐의 제조 및 성질)

  • 최창남;박원규;변수진;이기영
    • Textile Coloration and Finishing
    • /
    • v.15 no.5
    • /
    • pp.327-332
    • /
    • 2003
  • In this study, the polyurethane microcapsules for non-aqueous dyeing containing iron oxide and disperse dyes were prepared by in-situ polymerization method using hexamethylene diisocyanate(HDI) with ethylene glycol(EG). And the size, shape, and particle size distribution of microcapsules prepared were investigated. The size and shape of microcapsule were observed by optical microscope and scanning elecron microscope. The particle size distribution was analyzed by particle size analyzer. The microcapsule size and its distribution were largely effected by the existance of surface active agent in the system. When a surfactant did not exist in the system, the size distribution of microcapsules prepared was much uneven. By adding a surfactant, this phenomenon was disappeared. And the size of microcapsule was also effeced by the hydrophobicity of core material(disperse dye). It was considered due to the difference of dispersity of core materials. And the size of microcapsule prepared was inversely proportional to the stirring speed.

The Simulation on the Design and the Characteristic of Shielded Inductive $High-T_c$ Superconducting Fault Current Limiter (차폐유도형 고온초전도 전류제한기의 설계 및 특성시뮬레이션)

  • Im, Seong-Hun;Choe, Myeong-Ho;Lee, Hyeon-Su;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.173-178
    • /
    • 1999
  • In this paper, the characteristics of the shielded inductive superconducting fault current limiter(FCL) were simulated and analyzed. After determining parameters fo design for superconducting tube, iron core and primary coil, simple power system composed of shielded inductive FCL was simulated by the numerical analysis. The currents flowing under the fault condition could be limited below 50 A successfully. It was suggested that as the important factors of operational characteristics, the turns of primary coil and size of iron core play a major role for whether the shielded inductive SCFCL operated as inductive type or resistive type FCL.

  • PDF

Optimal Design of Wound core type Transformer by Equivalent Anesotropic Block (권철심변압기의 등가이방성모델을 이용한 최적설계)

  • Im, D.H.;Kwon, B.I.;Park, S.C.;Lee, J.H.;Kim, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.156-158
    • /
    • 1994
  • The analysis of the thin lamination model of the amorphous transformer by FEM requires many region, divisions and much calculating tine, and it has difficulty in calculating for mordern computer. A new method which is simulated by a solid but anisotropic block with the magnetic permeabilities in two orthogonal directions selected to account for the presence of the laminations. [1] Based on this equivalent anisotropic block model, we analyzed the iron loss of the amorphous transformer by FEM, and presented an optimal design example of core dimensions for minimizing the iron loss.

  • PDF

Development of High Thrust Linear Motor for Machine Tool (공작기계용 고추력 리니어모터 개발)

  • 정재한;박재완;박재한;정시욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.423-428
    • /
    • 2002
  • Due to various advantages over the conventional linear motion device such as ball-screw, linear motors have been used in wide variety of industrial applications for years. Driven by increased demand for precision machine tools, the importance of high positioning accuracy, high stiffness and high thrust are greatly increasing. The merits of linear motor are high speed, high acceleration and good positioning accurcy. In addition, Linear motor for high quality machine tool call for high thrust, high stiffness. In this paper, thrust ripple, detent force and thermal behavior are considered for the development of high performance linear motor whose thrust is up to 4,000N. This paper presents a comprehensive study for an iron core type linear motor characteristics that include the influence of PM position on thrust, thrust ripple by detent force and motor dynamics as well.

  • PDF

Analysis on Hysteresis Characteristics of a Transformer Type Superconducting Fault Current Limiter (변압기형 초전도전류제한기의 히스테리시스 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.164-168
    • /
    • 2010
  • The transformer is expected to be an essential component of a superconducting fault current limiter (SFCL) for both the increase of its voltage ratings and the simultaneous quench due to different critical current between high-$T_C$ superconducting (HTSC) elements comprising the SFCL. However, in order to perform the effective current limiting operation of the SFCL, the design for the SFCL considering the hysteresis characteristics of the iron core is required. In this paper, the influence of the hysteresis characteristics of the iron core comprising the transformer type SFCL on its current limiting characteristics was investigated. Through the comparative analysis on the hysteresis curves due to the ratio of the turn number between the 1st and the 2nd windings of the transformer, the proper design condition for the ratio of the turn number to achieve the effective current limiting operation of the transformer type SFCL could be obtained.

Analysis on Hysteresis Characteristics of Flux-Lock Type HTSC Fault Current Limiter (자속구속형 고온초전도 사고전류 제한기의 히스테리시스 특성 분석)

  • Lim, Sung-Hun;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Han, Tae-Hee;Do, Ho-Ik;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.493-495
    • /
    • 2006
  • The hysteresis characteristics of flux-lock reactor, which is an essential component of flux-lock type superconducting fault current limiter (SFCL), was investigated. The hysteresis loss of iron core in flux-lock type SFCL does not happen due to its winding's structure especially in the normal state. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. Through the hysteresis curves together with the fault current level due to the inductance ratio for the 1st and 2nd windings, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

  • PDF

One-Ampere Conductor Method for Tubular Linear Induction Motor for Size Reduction of Primary Iron Core

  • Lee, Byeong-Hwa;Kim, Kyu-Seob;Kwon, Soon-O;Sun, Tao;Hong, Jung-Pyo;Lee, Jung-Ho
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.46-50
    • /
    • 2011
  • This paper presents size reduction of primary iron core for tubular linear induction motor by improved winding configuration. Using one-ampere conductor method, magnetic field analysis of tubular linear induction motor for size reduction is conducted. Size reduction and improvement of air gap flux distribution is achieved by improved winding configuration, and analysis results are verified by finite element analysis (FEA) and experiments.