• Title/Summary/Keyword: iron oxide scale

Search Result 50, Processing Time 0.032 seconds

Removal of iron oxide scale from feed-water in thermal power plant using superconducting magnetic separation

  • Nishijima, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.22-25
    • /
    • 2019
  • The superconducting magnetic separation system has been developing to separate the iron oxide scale from the feed water of the thermal power plant. The accumulation in the boiler lowers the heat exchange rate or in the worst case damages it. For this reason, in order to prevent scale generation, controlling pH and redox potential is employed. However, these methods are not sufficient and then the chemical cleaning is performed regularly. A superconducting magnetic separation system is investigated for removing iron oxide scale in a feed water system. Water supply conditions of the thermal power plant are as follows, flow rate 400 t / h, flow speed 0.2 m / s, pressure 2 MPa, temperature $160-200^{\circ}C$, amount of scale generation 50 - 120 t / 2 years. The main iron oxide scale is magnetite (ferromagnetic substance) and its particle size is several tens ${\mu}m$. As the first step we are considering to introduce the system to the chemical cleaning process of the thermal power plant instead of the thermal power plant itself. The current status of development will be reported.

Hydrogen Reduction Behavior of Oxide Scale in Water-atomized Iron Powder (수분사 Fe 분말의 산화물 및 이의 수소가스 환원거동)

  • Shin, Hea-Min;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.422-428
    • /
    • 2014
  • In this study, the reduction kinetics and behaviors of oxides in the water-atomized iron powder have been evaluated as a function of temperature ranging $850-1000^{\circ}C$ in hydrogen environment, and compared to the reduction behaviors of individual iron oxides including $Fe_2O_3$, $Fe_3O_4$ and FeO. The water-atomized iron powder contained a significant amount of iron oxides, mainly $Fe_3O_4$ and FeO, which were formed as a partially-continuous surface layer and an inner inclusion. During hydrogen reduction, a significant weight loss in the iron powder occurred in the initial stage of 10 min by the reduction of surface oxides, and then further reduction underwent slowly with increasing time. A higher temperature in the hydrogen reduction promoted a high purity of iron powder, but no significant change in the reduction occurred above $950^{\circ}C$. Sequence reduction process by an alternating environment of hydrogen and inert gases effectively removed the oxide scale in the iron powder, which lowered reduction temperature and/or shortened reduction time.

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF

Magnetic fields-assisted movement of iron oxide-nanoparticles-incorporated large scale alginate capsules

  • Lee, Dohyeon;Park, Sunho;Kim, Daun;Nam, Hyeun;Kim, Jangho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.27-27
    • /
    • 2017
  • Biocompatible capsules have recently been highlighted as novel delivery platforms of any "materials" (e.g., drug, food, agriculture pesticide) to address current problems of living systems such as humans, animals, and plats in academia and industry for agriculture, biological, biomedical, environmental, food applications. For example, biocompatible alginate capsules were proposed as a delivery platform of biocontrol agents (e.g., bacterial antagonists) for an alternative to antibiotics, which will be a potential strategy in future agriculture. Here, we proposed a new platform based on biocompatible alginate capsules that can control the movements as an active target delivery strategy for various applications including agriculture and biological engineering. We designed and fabricated large scale biocompatible capsules using alginates and custom-made nozzles as well as gelling solutions. To develop the active target delivery platforms, we incorporated the iron oxide nanoparticles in the large scale alginate capsules. It was found that the sizes of large scale alginate capsules could be controlled via various working conditions such as concentrations of alginate solutions and iron oxide nanoparticles. As a proof of concept work, we showed that the iron oxide particles-incorporated large scale alginate capsules could be moved actively by the magnetic fields, which would be a strategy as active target delivery platforms for agriculture and biological engineering (e.g., controlled delivery of agriculture pesticides and biocontrol agents).

  • PDF

Composite Solid Propellants for Propulsion System Including a Yellow Iron Oxide (2) (황색산화철을 포함하는 혼합형 고체추진제의 특성에 관한 연구 (2))

  • Park, Sungjun;Kim, Kyungmin;Park, Jungho;Rho, Taeho;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.12-17
    • /
    • 2020
  • The mechanical properties of the propellant with yellow iron oxide were slightly increased compared to the propellant with red iron oxide. The propellant with yellow iron oxide used two types of AP. As the ratio of small particles of AP increased, the burning rate increased. The propellant may be applied to the propellant under operating conditions of 17.5 mm/sec or less having a pressure index of 0.5. The burning rate downs in the mixer scale-up. The stress at maximum load of propellant decreased and the strain at maximum load increased in the mixer scale-up. The yellow iron oxide did not affect the adhesive force between the insulation/liner/propellant.

Forging Process Technology as Observed in the Microstructure of a Hammer Scale Excavated from the Naju Bogam-ri Remains (나주 복암리 유적 출토 단조박편의 미세조직을 통한 단야 공정 기술체계 연구)

  • Song, Jung Il;Woo, Kee Do
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.599-603
    • /
    • 2012
  • The microstructure of a hammer scale excavated from the Bogam-ri was examined in an effort to understand the iron technologies applied in the manufacturing of an iron forging process technology. The microstructures of oxide layer in the hammer scale were found to have crucial information about the ancient iron forging process treatment. The microstructure observed in the hammer scale can be distinguished by the forging process. First, the microstructure of the oxide layer in the hammer scale created by the forging process is Wstite (FeO) in the form of leaves. Latterly, the microstructure of the $W{\ddot{u}}stite$(FeO) in the hammer scale is observed to be in the form of a flat shape formed by a repeating forging process.

Iron Oxide Nanoparticle-incorporated Alginate Capsules as Magnetic Field-assisted Potential Delivery Platforms for Agriculture Pesticides and Biocontrol Agents

  • Lee, Dohyeon;Choi, Kyoung Soon;Kim, Daun;Park, Sunho;Kim, Woochan;Jang, Kyoung-Je;Lim, Ki-Taek;Chung, Jong Hoon;Seonwoo, Hoon;Kim, Jangho
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.323-329
    • /
    • 2017
  • Purpose: Biocompatible capsules have recently been highlighted as a novel platform for delivering various components, such as drug, food, and agriculture pesticides, to overcome the current limitations of living systems, such as those in agriculture, biology, the environment, and foods. However, few active targeting systems using biocompatible capsules and physical forces simultaneously have been developed in the agricultural engineering field. Methods: Here, we developed an active targeting delivery platform that uses biocompatible alginate capsules and controls movements by magnetic forces for agricultural and biological engineering applications. We designed and fabricated large-scale biocompatible capsules, using custom-made nozzles ejecting alginate solutions for encapsulation. Results: To develop the active target delivery platforms, we incorporated iron oxide nanoparticles in the large-scale alginate capsules. The sizes of alginate capsules were controlled by regulating the working conditions, such as concentrations of alginate solutions and iron oxide nanoparticles. Conclusions: We confirmed that the iron oxide particle-incorporated large-scale alginate capsules moved actively in response to magnetic fields, which will be a good strategy for active targeted delivery platforms for agriculture and biological engineering applications, such as for the controlled delivery of agriculture pesticides and biocontrol agents.

An Oxidation Behavior with Heat-treatment in STS 304 and 316 (STS 304, 316강의 열처리에 따른 산화거동)

  • Lee, Kyung-Ku;Yoon, Dong-Ju;Ghi, Whe-Bong;Kang, Chang-Sug;Lee, Doh-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.186-191
    • /
    • 1998
  • An oxidation behavior of 304 and 316 stainless steels were studied in dry air. After solution treatment, specimens were polished up to $1{\mu}m$ $A1_2O_3$ grade and then subjected to oxidation treatment in dry air at $800^{\circ}C{\sim}1200^{\circ}C$. The oxidation behavior between matrix and oxide scale was analyzed with SEM, EDS and XRD. When oxidation treatment was conducted at $1200^{\circ}C$, large thickness of Fe oxide scale was formed on top of surface and fine $(Cr,Fe)_2O_3$ oxide film was formed below it. Cr rich zone existed at interface between metal and $(Cr,Fe)_2O_3$ oxide layer, and it was believed that this zone acted as obstacle to oxidation. Most of Ni was detected at the interface between metal and $(Cr,Fe)_2O_3$ and also detected at the interface between $Fe_2O_3$ and $(Cr,Fe)_2O_3$.

  • PDF

Development of Chemical Cleaning Agents for Cleaning Indoor Water Supply Pipes (옥내급수관 세척용 화학세정제 개발 연구)

  • Lee, Jae-Hoon;Jung, Jae-Yong;Park, Yong-Bae;Bae, Jae-Heum;Woo, Dal-Sik;Sin, Hyun-Duk
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.162-171
    • /
    • 2010
  • The objective of this study is to develop cleaning agents for the indoor water supply pipe which is environmentally friendly and suitable for removing scale by using various organic acids, inorganic acids, and some additives. Among various organic acids, oxalic acid, citric acid, and malic acid showed good cleaning efficiency of iron oxides which were main components of the indoor water supply pipe scale. Several cleaning agents were formulated by adding chemical additives into these organic acids and evaluated for removal of iron oxides. In this study, it was found that nonionic surfactants were excellent for the removal of iron oxide scale among various additives. Two types of cleaning agents($F_1$, $F_2$) with comparatively high solvent power for iron oxides were formulated in this study. The cleaning agents $F_1$ made by organic acids and some additives were formulated to be safe and environmentally friendly, but seemed to have disadvantage due to their comparatively low cleaning efficiency of iron oxide than $F_2$. But, the cleaning agents $F_2$ prepared by adding inorganic acid a little to $F_1$ showed comparatively good cleaning efficiency of iron oxide and could be recommended for removing hard scale of iron oxides in the indoor water supply pipe. Thus, it is considered that the formulated cleaning agents should be selected based on the extent of scale in the indoor water supply pipe.

EBSD Microstructural Characterisation of Oxide Scale on Low Carbon Steel

  • Birosca, S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.182-186
    • /
    • 2008
  • The microstructures of the oxide scale developed at high temperature on steels are very complex and their development depends on many factors including time, temperature, oxidation conditions and alloying elements. The classical model of an oxide scale on steel consisting of wüstite, magnetite and haematite layers, is more complicated in reality and its properties change with the factors that affect their development. An understanding of the oxide scale formation and its properties can only be achieved by careful examination of the scale microstructure. The oxide scale microstructure may be difficult to characterise by conventional techniques such as optical or standard scanning electron microscopy. An unambiguous characterisation of the scale and the correct identification of the phases within the scale are difficult unless the crystallographic structure for each phase in the scale is considered and a simultaneous microstructure-microtexture analysis is carried out. In the current study Electron Backscatter Diffraction (EBSD) has been used to investigate the microstructure of iron oxide layers grown on low carbon steels at different times and temperatures. EBSD has proved to be a powerful technique for identifying the individual phases in the oxide scale accurately. The results show that different grain shapes and sizes develop for each phase in the scale depending on time and temperature.