• 제목/요약/키워드: iron oxide nanoparticles

검색결과 118건 처리시간 0.025초

방사선조사에서 나노 입자 혼합물의 영향 (The Effects of Nanoparticles for Irradiation)

  • 예지원;신현진
    • Journal of Yeungnam Medical Science
    • /
    • 제28권2호
    • /
    • pp.145-152
    • /
    • 2011
  • Background: To evaluate the changes in the radiation dose and temperature distribution on irradiated egg albumin and nanoparticle ($Fe_3O_4$) powder mixed egg albumin. Methods: A new type of phantom was designed by fabricating a $30{\times}30{\times}30cm$ acryl square inside a $3{\times}3{\times}3cm$ small square and dividing it into two parts. In the control group, only egg albumin was irradiated, and in the test group, 25 nm 20 mg/cc, 25 nm 40 mg/cc, and 1 um 40mg/cc nanoparticles with egg albumin were irradiated. The radiation isodose distributions and temperature changes were then observed. Results: No significant changes were observed in the radiation dose and temperature distribution. Conclusion: The nanoparticles were considered not to have had any effect on the radiation dose and temperature distribution under the experimental conditions. Further studies can be conducted based on the changes in the mixture material.

  • PDF

아미노실란화 철산화물 나노입자를 이용한 Human DNA의 초고속 자성분리 (High Throughput Magnetic Separation for Human DNA by Aminosilanized Iron Oxide Nanoparticles)

  • 강기호;장정호
    • 한국세라믹학회지
    • /
    • 제45권10호
    • /
    • pp.605-609
    • /
    • 2008
  • This work describes the preparation of functionalized magnetic nanoparticles(MNPs) and their bioapplication to human DNA separation. Silica coated MNPs were prepared by changing the volume ratio of tetraethyl orthosilicate(TEOS) for controlled coating thickness on the original nanoparticle of MNPs. The sol-gel process in silica coating on MNPs surface was adapted for relatively mild reaction condition, low-cost, and surfactant-free. And then amino functionalized magnetic nanoparticles were synthesized using amine groups as surface modifiers. The result of adsorption efficiency for human DNA with amino-functionalized silica coated MNPs was calculated as a function of the number of amine groups.

Fluorescently Labeled Nanoparticles Enable the Detection of Stem Cell-Derived Hepatocytes

  • Ha, Young-Eun;Shin, Jin-Sup;Lee, Dong-Yun;Rhim, Tai-Youn
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1983-1988
    • /
    • 2012
  • Stem cell transplantation is emerging as a possible new treatment for liver cirrhosis, and recent animal studies have documented the benefits of stem cell therapy in a hepatic fibrosis model. However, the underlying mechanism of stem cell therapy is still unclear. Among the proposed mechanisms, the cell replacement mechanism is the oldest and most important, in which permanently damaged tissue can be replaced by normal tissue to restore function. In the present study, Cy5.5-labeled superparamagnetic iron oxide (SPIO) was used to label human mesenchymal stem cells. The uptake of fluorescently labeled nanoparticles enabled the detection and monitoring of the transplanted stem cells; therefore, we confirmed the direct incorporation and differentiation of SPIO into the hepatocyte-like transplanted stem cells by detecting human tyrosine aminotransferase (TAT), well-known enzymatic marker for hepatocyte-specific differentiation.

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.

Solid Phase Extraction of Celecoxib from Drug Matrix and Biological Fluids by Grafted Poly β-cyclodextrine/allyl Amine Magnetic Nano-particles

  • Kamari, Sahar;Panahi, Homayon Ahmad;Baimani, Nasim;Moniri, Elham
    • Korean Chemical Engineering Research
    • /
    • 제55권3호
    • /
    • pp.287-295
    • /
    • 2017
  • Using nanotechnology, magnetic nanoparticles of iron oxide were produced via co-precipitation method and followed modification with organic compounds. In the next step, functionalized monomer was provided via coupling ${\beta}$-cyclodextrine and allylamine onto modified magnetic nanoparticles. These nanoparticles were used to establish the adsorption rate of celecoxib. Magnetic nanoparticles are modified by (3-mercaptopropyl)trimethoxysilane. Nano-adsorbent was characterized by analytical and spectroscopic methods, such as Fourier transform infrared spectroscopy, elemental analysis, thermo-gravimetric analysis, and transmission electron microscopy (TEM). Laboratory parameters, such as the kinetics of adsorption isotherms, pH, reaction temperature and capacity were optimized. Finally, by using this nano-adsorbent in the optimized condition, extraction of celecoxib from biological samples as urine, drug matrix and blood plasma was carried out by high performance liquid chromatography with sensitivity and high accuracy.

기상합성공정을 이용한 FePt 나노입자의 실시간 L10 상변화 (Real-time Transformation of FePt Nanoparticles to L10 Phase by the Gas Phase Synthesis)

  • 이기우;이창우;김순길;이재성
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.46-51
    • /
    • 2011
  • Real-time formation of $L1_0$ phase of FePt nanoparticles in the gas phase during ultrasonic-spray pyrolysis is first discussed in the present study. Without any post heat treatment, $L1_0$ phase of FePt nanoparticles appeared at the temperature above $900^{\circ}C$ in the gas phase synthesis. X-ray diffractometry (XRD) and transmission electron microscopy (TEM) studies revealed that FePt nanoparticles less than 10 nm in size contained small volume of $L1_0$ fct phase. However, in other samples obtained at the temperature below $900^{\circ}C$, iron oxide phase co-existed and no evidence of phase transformation was found. Thus, it is anticipated that the time of flight of particles required for crystallization and phase transformation was extended according to the increase of the collision rate. Finally, magnetic properties represented by coercivity and saturation magnetization and functional groups on the particle surface were discussed based on VSM and FT-IR results.

산화철 나노입자의 U373MG 세포 독성평가 및 방사선 세포생존 곡선에 미치는 영향에 대한 연구 (A Research on Superparamagnetic Iron Oxide Nanoparticles' Toxicity to U373MG Cell and its Effect on the Radiation Survival Curve)

  • 강성희;김정환;김도경;강보선
    • 한국방사선학회논문지
    • /
    • 제6권6호
    • /
    • pp.507-513
    • /
    • 2012
  • 본 연구는 초상자성 산화철 나노입자 (SPIONs)의 세포독성평가 및 SPIONs를 uptake한 뇌신경교종 (glioblastoma multiforme, GBM) 세포의 방사선 세포생존곡선을 구하기 위해 수행되었으며, 본 연구의 결과는 양성자선과 SPIONs 이용한 GBM의 양성자선 치료선량 정보 등 양성자선 치료효과를 개선하기 위한 기초자료로 활용될 수 있을 것이다. SPIONs의 세포독성을 평가는 in vitro 실험 후 MTT 분석법을 이용하여 수행하였다. 독성평가 결과 $1{\sim}100{\mu}g/ml$의 농도에서는 세포생존율의 유의한 차이가 나타나지 않았다. 하지만 $200{\mu}g/ml$의 농도에서는 세포생존율이 74.2%로 감소하며 세포독성을 나타냈다. SPIONs가 uptake 된 U373MG세포와 uptake 되지 않은 U373MG세포에 0~5 Gy의 양성자선을 조사하여 각각에 대한 세포생존곡선을 측정한 결과를 분석하여 SPIONs가 uptake된 U373MG세포의 세포생존율이 더 급격히 감소함을 알 수 있었다. 결론적으로 SPIONs가 uptake 된 세포에서는 보다 적은 선량으로도 세포사멸을 유도할 수 있음을 알 수 있었다. 따라서 GBM에 SPIONs를 타겟팅하면 양성자선을 이용한 뇌신경교종 치료효과를 개선할 수 있음을 보였다.

Poly(2-methacryloyloxyethyl phosphorylcholine/fluorescein O-methacrylate)가 도입된 산화철 나노 입자의 제조 및 발열 특성 연구 (Preparation and characterization of Poly(2-methacryloyloxyethyl phosphorylcholine/fluorescein O-methacrylate)-coated iron oxide nanoparticles)

  • 류성곤;정인우
    • 접착 및 계면
    • /
    • 제19권3호
    • /
    • pp.106-112
    • /
    • 2018
  • 악성 조직의 온열 치료는 성공적인 암 치료 방법의 하나로서 방사선 치료 및 화학 요법에 비해 생체 적합성이 우수하고 비교적 온화한 조건에서 사용할 수 있어 최근 큰 주목을 받고 있다. 본 연구에서는 온열 치료를 목적으로 생체 적합성 고분자인 poly(2-methacryloyloxyethyl phosphorylcholine/fluorescein O-methacrylate) (P(MPC/FOM))를 코팅한 초상자성 산화철 나노 입자 (IONP)를 제조하고 관련 특성을 분석하였다. 15 nm 직경을 갖는 IONP는 먼저 공침법에 의해 제조된 후, 4-cyanopentanoic acid dithiobenzoate (CTP) 을 사용하여 IONP의 표면을 개질하였으며, 이 후 MPC 및 FOM 단량체의 reversible addition-fragmentation chain transfer (RAFT) 공중합을 통해 P(MPC/FOM)의 코로나 층을 형성시켰다. 투과 전자 현미경 (TEM)과 동적 광 산란 (DLS) 분석을 통해 IONP@P(MPC/FOM)의 형태 및 수력학적 크기를 확인할 수 있었으며, 열 중량 분석 (TGA)을 통해 P(MPC/FOM) 코로나 층의 형성을 확인하였다. 또한 교류 자기장을 이용해 IONP 분산액을 노출시킨 결과, 0.2 중량 %의 IONP @ P(MPC / FOM) 수분산액이 온열 치료에 사용될 수 있음을 확인하였다.

비소 및 중금속의 식물체 전이감소를 위한 철 나노 입자가 담지된 바이오차의 농경지 토양 안정화제 적용성 평가 (Stabilization of As and Heavy Metals in Farmland Soil using Iron Nanoparticles Impregnated Biochar)

  • 고일하;김정은;박소영;최유림;김동수;문덕현;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권6호
    • /
    • pp.1-10
    • /
    • 2022
  • This study assessed the feasibility of iron oxide nanoparticles impregnated with biochar (INPBC), derived from woody biomass, as a stabilizing agent for the stabilization of farmland soil in the vicinity of an abandoned mine through pot experiments with 28 days of lettuce growth. The lettuce grown in the INPBC amended soils increased by more than 100% and the concentrations of inorganic elements (Cu, Ni, Zn) decreased by more than 40%. As, Cd and Pb were not transferred properly from the soils to the lettuce biomass. The bioavailability of arsenic and heavy metals in the INPBC amended soils were decreased by 26%~50%. It seems that the major mechanisms of stabilization were arsenic adsorption on iron oxides, heavy metal precipitation by soil pH increasing and heavy metal adsorption on organic matter. These results revealed that the lower bioavailability of the inorganic pollutants in the soils stabilized using INPBC induced lower transfer to the lettuce. Thus, INPBC could be used as an amendment material for the stabilization of farmland soils contaminated by arsenic and heavy metals. However, a pre-review of the chemical properties of the amended soil must be performed prior to applying INPBC in farmland soil because the concentration of the nutrients in the soil such as available phosphates and exchangeable cations (Ca, Mg, K) could be decreased due to adsorption on the surface of the iron oxides and organic matter.