• Title/Summary/Keyword: iron oxidation

Search Result 436, Processing Time 0.022 seconds

Phase Transformations and Oxidation Properties of Fe$_{0.98}$Mn$_{0.02}$Si$_2$ Processed by Mechanical Alloying (기계적 합금화법에 의해 제조된 Fe$_{0.98}$Mn$_{0.02}$Si$_2$의 상변태와 산화특성)

  • 심웅식;이동복;어순철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.200-205
    • /
    • 2003
  • Thermoelectric p-type $Fe_{0.98}$ $Mn_{ 0.02}$$Si_2$ bulk specimens have been produced by mechanical alloying and consolidation by vacuum hot pressing. The subsequent isothermal annealing was not able to fully transform the mestastable as -milled powders into the $\beta$ $-FeSi_2$ phase, so that the obtained matrix consisted of not only thermoelectric semiconducting $\beta$-FeSi$_2$ but also some residual, untransformed metallic $\alpha$ $- Fe_2$$Si_{ 5}$ and $\varepsilon$-FeSi mixtures. Interestingly, $\beta$ - $FeSi_2$ was more easily obtained in the low density specimen when compared to the high density specimen. The oxidation at 700 and $800^{\circ}C$ in air led to the phase transformation of the above described iron - silicides and the formation of a thin silica surface layer.

Honeycomb-structured Fe2O3 Catalysts for Low-temperature CO Oxidation (산화철 허니컴 구조 촉매를 활용한 일산화탄소 저온 산화반응 연구)

  • Lee, Donghun;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.151-154
    • /
    • 2019
  • We report the effective fabrication processes for more practical monolith catalysts consisting of washcoated alumina on a cordierite honeycomb monolith (CHM) and iron oxides nanoparticles in the alumina prepared by a simple dry coating method. It is confirmed that iron oxide nanoparticles were well deposited into the mesopore of washcoated alumina which is formed on the corner wall of honeycomb channel, and the effect of annealing temperature was evaluated for carbon monoxide oxidation catalysts. $Fe_2O_3/{\gamma}-Al_2O_3/CHM$ catalysts annealed at $350^{\circ}C$ exhibited the most enhanced catalytic activity, 100% conversion efficiency at more than $200^{\circ}C$ operating temperature.

Studies on Preparation of Transparent Iron Oxide (투명산화철의 製造에 관한 硏究)

  • Baek, Moo-Hyun;Lim, Jong-Ho;Kim, Tae-Kyung;Lee, Seoung-Won
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.9-15
    • /
    • 2004
  • The optimum conditions were studied for the preparation of transparent iron oxide with the air oxidation of FeOOH. The FeOOH obtained by mixing NaOH and FeSO$_4$ solution in various conditions such as R(=2NaOH/FeSO$_4$), FeSO$_4$ concentration. reaction temperature and air flow rate. When the FeSO$_4$ increased gradually, the concentration of iron ion in the solution became high. So, particle size increased precipitating Fe$_3O_4$. Goethite dehydrate at about 200$^{\circ}C$ and ended the reaction at about 320$^{\circ}C$ forming hematite. The lower the reaction temperature was, the shorter the particle length of goethite and particle size decreased. When the flow rate of air as an oxidant increased, the amount of dissolved oxygen in the solution increased, which made oxidation rate increased. And then particle size of goethite decreased.

Factors Affecting Lipid Oxidation Development in High pH Ground Pork (고 pH 돈육 내의 항산화 기작)

  • Whang, Key;Kim, Hyuk-Il;Ha, Young-Duck
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.517-520
    • /
    • 1993
  • As the pH of ground pork increased from 5.0 to 7.0, the corresponding development of 2-thiobarbituric acid reactive substance (TBARS) during storage at $4^{\circ}C$ decreased significantly (p<.001). At the 4th day of refrigerated storage, with the increase in pH of ground pork from 5.0 to 7.0, the release of free iron decreased significantly (p<.05) from 1.50 to .99 ppm. The decrease in free iron content of pH 7 pork well explains the decrease in TBARS absorbances. The fact that the addition of 2% ethylenediamine tetraacetic acid (EDTA) to pH 5 ground pork decreased the oxidative rancidity development (p<.001) strongly supported the above finding that the increased free iron content of pH 5ground pork catalyze the oxidation during storage. The activity of glutathione peroxidase (GPx) at the 4th day of refrigerated storage decreased significantly (p<.05) when the pH of ground pork decreased from 7.0 to 5.0. Both the lower free iron content and the higher activity of GPx were proved to be important factors in controlling the oxidative rancidity of high pH ground pork.

  • PDF

Removal of Nitrate by modified Nanoscale Zero-Valent Iron (개질된 Nanoscale Zero-Valent Iron을 이용한 질산성질소 처리)

  • Kim, Hong-Seok;Ahn, Jun-Young;Hwang, Kyung-Yup;Park, Joo-Yang;Hwang, Inseong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.471-479
    • /
    • 2009
  • A Nanoscale Zero-Valent Iron(NZVI) was modified to build a reactor system to treat nitrate. Shell layer of the NZVI was modified by slow exposure of the iron surface to air flow, which produced NZVI particles that are resistant to aerial oxidation. A XANES (X-ray Absorption Near-Edge Structure) analysis revealed that the shell consists of magnetite ($Fe_3O_4$) dominantly. The shell-modified NZVI(0.5 g NZVI/ 120 mL) was able to degrade more than 95% of 30 mg/L of nitrate within $30 hr^{-1}$ ( pseudo first-order rate constant($k_{SA}$) normalzed to NZVI surface area ($17.96m^2/g$) : $0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$). Ammonia occupied about 90% of degradation products of nitrate. Nitrate degradation efficiencies increased with the increase of NZVI dose generally. Initial pH values of the reactor systems at 4, 7, and 10 did not affect nitrate removal rate and final pH values of all experiments were near 12. Nitrate removal experiments by using the shell-modified NZVI immobilized on a cellulose acetate (CA) membrane were also conducted. The nitrate removal efficiency of the CA membrane supported NZVI ($k_{SA}=0.0036L{\cdot}m^{-2}{\cdot}hr^{-1}$) was less than that of the NZVI slurries($k_{SA}=0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$), which is probably due to less surface area available for reduction and to kinetic retardation by nitrate transport through the CA membrane. The detachment of the NZVI from the CA membrane was minimal and impregnation of up to 1 g of NZVI onto 1 g of the CA membrane was found feasible.

Antioxidants of Pine Needle Extracts According to Preparation Method (제조방법별 솔잎추출물의 항산화성 검토)

  • Kim, Soo-Min;Kim, Eun-Ju;Cho, Young-Suk;Sung, Sam-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.527-534
    • /
    • 1999
  • This study was carried out to investigate the effects of pine needle extracts on lipid oxidation and free radical reaction in iron sources reacted with active oxygen species. The results were summarized as follow; the catalytic effects of active oxygen on lipid oxidation in oil emulsion tended to be showed $OH,\;H_2O_2\;and\;KO_2$ in order. At the same time, pine needle extracts itself were tended to be showed a little catalytic effects. Active oxygen scavenging ability of pine needle extracts didn't show, but pine needle extracts played role as a strong chelating agents to bind iron ion if $Fe^{2+}$ ion exist in oil emulsion. The content of $Fe^{2+}$ ion and total iron in CPNP were higher than those of HPNP and FPN. The content of ascorbic acid of FPN showed the highest (87.77 ppm) among several pine needle extracts. Electron donating ability of HPNP and CPNP were 81% and 78%, respectively, which were showed higher content than those of FPN. The SOD-like activity of HPNP showed 44.30%, compared to other pine needle extracts which means the most strong antioxidant reaction. The nitrite scavenging effects were tended to be different, depending on pH value as pH value was increased. Especially, they didn't show the nitrite scavenging effect in pH6.0.

  • PDF

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

Removal of Arsenic from Leachate of Tailing using Laboratory-synthesized Zerovalent Iron

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo;Park, Won-Jeong;Kim, In-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.6-12
    • /
    • 2007
  • Feasibility of laboratory-synthesized zerovalent iron was investigated to remove arsenic from leachates of tailings taken from an Au-Ag abandoned mine. The tailings were seriously contaminated with arsenic, and its potential adverse effect on the ecosystems around the mine seems to be significantly high. Long-term column experiments were conducted for about 3.5 months to evaluate the effectiveness of the synthesized zerovalent iron for removal of arsenic. Over than 95% removal efficiency of As was observed in the zerovalent iron mediated tests. In addition, the XRD data suggest that the corrosion products of ZVI were identified magnetite, maghemite, goethite, and lepidocrocite, all of which support Fe(II) oxidation as an intermediate step in the zerovalent iron corrosion process. The results indicate that arsenic can be removed from the tailing-leachate by the mechanism of coprecipitation and/or adsorption onto those iron oxides formed from ZVI corrosion.

Synthesis of Iron Oxide Using Ferrous Sulfate and Ammonia Water (황산제일철과 암모니아수를 이용한 산화철 합성)

  • Kim, Sam-Joong;Eom, Tae-Hyoung;Wang, Wei;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.218-221
    • /
    • 2008
  • A $Fe(OH)_2$ suspension was prepared by mixing iron sulfate and a weak alkali ammonia solution. Following this, iron oxides were synthesized by passing pure oxygen through the suspension (oxidation). The effects of different reaction temperatures ($30^{\circ}C$, $50^{\circ}C$, $70^{\circ}C$) and equivalent ratios ($0.1{\sim}10.0$) on the formation of iron oxides were investigated. An equilibrium phase diagram was established by quantitative phase analysis of the iron oxides using the Rietveld method. The equilibrium phase diagram showed a large difference from the equilibrium phase diagram of Kiyama when the equivalent ratio was above 1, and single $Fe_3O_4$ phase only formed above an equivalent ratio 2 at all reaction temperatures. Kiyama synthesized iron oxide using iron sulfate and a strong alkali NaOH solution.