• Title/Summary/Keyword: iron nano particle

Search Result 48, Processing Time 0.027 seconds

Oxidation and Magnetic Properties of Iron-nitride Particles in Fluids

  • Lee, Hyo-Sook;Isao Nakatani
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.7-10
    • /
    • 2002
  • Iron nitride magnetic fluid was oxidized by exposing it to the air under normal atmospheric conditions. After exposure of 3.2 hours, the relative saturation magnetization of the iron nitride magnetic fluid is less than 0.4 compared to the value of the unexposed sample, and it is nearly zero after exposure for 1008 hours. The structure of the oxidized iron nitride is considered to be a non-magnetic hematites. The thickness of the oxidation layers of the iron-nitride particles are nearly the same, about 3 nm, regardless of the different particle sizes.

Influence of the Precipitation Medium and Ultrasonic Wave on the Synthesis of Iron Oxide (산화철 합성에 미치는 침전제와 초음파의 영향)

  • Lim, Jong-Ho;Kim, Tae-Hyun;Lee, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.687-691
    • /
    • 2006
  • Synthesis of Iron oxides by air oxidation of $FeSO_4$ solutions in the presence of NaOH, Diethylenetriamine (DETA), Butylamine (BA) and influence of ultrasonic wave were investigated by XRD, SEM and particle size analyzer. As the DETA addition increased to 0.05 mol, $Fe_3O_4$ was formed with goethite($\alpha$- FeOOH) and $Fe_3O_4$ single phase was formed above 0.18mol of DETA. As the BA addition increased, the XRD peak intensity of (020) face of lepidocrocite($\gamma$-FeOOH) was developed until the formation of $Fe_3O_4$ and reduced the size of the iron oxide particles formed. Ultrasonic wave reduced the size of the iron oxide particles but gave little effects on the iron oxide particles synthesized by amine.

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

Synthesis of Magnetic Polystyrene-Polyimide Core-Shell Microsphere (자성 폴리스티렌-폴리이미드 Core-Shell 마이크로스피어의 합성)

  • Ahn, Byung-Hyun
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.168-173
    • /
    • 2012
  • Polystyrene-polyimide core-shell microsphere was prepared by dispersion polymerization using poly(amic acid) as the stabilizer. Iron oxide was formed at the microsphere by thermal decomposition of iron pentacarbonyl impregnated in the microsphere. The magnetic polystyrene-polyimide microsphere was monodisperse and the size was about 500 nm. The magnetic polystyrene-polyimide microsphere had 40% of iron oxide, which was identified as $Fe_3O_4$ by X-ray diffraction.

Synthesis and Characterization of NixMn1-xFe2O4 Nanoparticles by a Reverse Micelle Process

  • Kim, Sun-Woog;Kim, Hyeon-Cheol;Kim, Jun-Seop;Kim, Hyun-Ju;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.298-301
    • /
    • 2008
  • A preparation of $Ni_xMn_{1-x}Fe_2O_4$ nanoparticles produced via the reduction of Nickel nitrate hexahydrate, Manganese (II) nitrate hexahydrate and Iron nitrate nonahydrate with hydrazine in Igepal CO-520/cyclohexane reverse micelle solutions was investigated. Transmission Electron Microscope (TEM), X-ray Diffraction (XRD) and Vibration Sample Magnetometer (VSM) analyses showed that the resultant nanoparticles increased the molar ration of water to Igepal CO-520 as the concentrations of Nickel nitrate hexahyrate, Manganese (II) nitrate hexahydrate and Iron nitrate nonahydrate increased. The average size of the synthesized particles calcined at $600^{\circ}C$ for 2hrs was in the range of 20 nm to 30 nm, and the particle distribution was broadened. The phase of the synthesized particles was crystalline, and the magnetic behavior of the synthesized particles was superparamagnetism. The effect of the synthesis parameters of the molar ratio of water to surfactant and the calcination temperature was discussed.

A Study on Enhancement of Nitrate Removal Efficiency using Surface-Modified Zero-Valent Iron Nanoparticles (표면개질된 영가철 나노입자를 이용한 질산성 질소 제거율 향상에 대한 연구)

  • Lim, Taesook;Cho, Yunchul;Cho, Changhwan;Choi, Sangil
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.517-524
    • /
    • 2016
  • In order to treat groundwater containing high levels of nitrate, nitrate reduction by nano sized zero-valent iron (nZVI) was studied using batch experiments. Compared to nitrate removal efficiencies at different mass ratios of $nitrate/Fe^0$, the removal efficiency at the mass ratio of 0.02% was the highest(54.59%). To enhance nitrate removal efficiency, surface modification of nZVI was performed using metallic catalysis such as Pd, Ni and Cu. Nitrate removal efficiency by Cu-nZVI (at $catalyst/Fe^0$ mass ratio of 0.1%) was 66.34%. It showed that the removal efficiency of Cu-nZVI was greater than that of the other catalysts. The observed rate constant ($k_{obs}$) of nitrate reduction by Cu-nZVI was estimated to $0.7501min^{-1}$ at the Cu/Fe mass ratio of 0.1%. On the other hand, TEM images showed that the average particle sizes of synthetic nZVI and Cu-nZVI were 40~60 and 80~100 nm, respectively. The results imply that catalyst effects may be more important than particle size effects in the enhancement of nitrate reduction by nZVI.

A Study on Magnetic Iron Oxide Nano Particles Synthesized by the Levitational Gas Condensation (LGC) Method (부양가스응축법에 의해 제조된 철산화물 나노 분말의 자기적 특성연구)

  • 엄영랑;김흥회;이창규
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.50-54
    • /
    • 2004
  • Nanoparticles of iron oxides have been prepared by the levitational gas condensation (LGC) method, and their structural and magnetic properties were studied by XRD, TEM and Mossbauer spectroscopy. Fe clusters were evaporated from a surface of the levitated liquid Fe droplet and then condensed into nanoparticles of iron oxide with particle size of 14 to 30 nm in a chamber filled with mixtures of Ar and $O_2$ gases. It was found that the phase transition from both $\gamma$-$Fe_2O_3$ and $\alpha$-Fe to $Fe_3O_4$, which was evaluated from the results of Mossbauer spectra, strongly depended on the $O_2$ flow rate. As a result, $\gamma$-$Fe_2O_3$ was synthesized under the $O_2$ flow rate of 0.1$\leq$$Vo_2$(Vmin)$\leq$0.15, whereas $Fe_3O_4$ was synthesized under the $O_2$, flow rate of 0.15$\leq$$Vo_2$(Vmin)$\leq$0.2.

Effect of nucleating agents and stabilisers on the synthesis of Iron-Oxide Nanoparticles-XRD analysis

  • Butt, Faaz A.;Jafri, Syed M. Mohsin
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.169-176
    • /
    • 2015
  • Iron nanoparticles were made by using the modified coprecipitation technique. Usually the characteristics of synthesised particles depend upon the process parameters such as the ratio of the iron ions, the pH of the solution, the molar concentration of base used, type of reactants and temperature. A modified coprecipitation method was adopted in this study. A magnetic stirrer was used for mixing and the morphology and nature of particles were observed after synthesis. Nanoparticles were characterised through XRD. Obtained nanoparticles showed the formation of magnetite and maghemite under citric acid and oxalic acid as stabilisers respectively. The size of nanoparticle was greatly affected by the use of different types of stabilisers. Results show that citric acid greatly reduced the obtained particle size. Particle size as small as 13 nm was obtained in this study. The effects of different kinds of nucleating agents were also observed and two different types of nucleating agents were used i.e. potassium hydroxide (KOH) and copper chloride ($CuCl_2$). Results show that the use of nucleating agent in general pushes the growth phase of nanoparticles towards the end of coprecipitation reaction. The particles obtained after addition of nucleating agent were greater in size than particles obtained by not utilising any nucleating agent. These particles have found widespread use in medical sciences, energy conservation and electronic sensing technology.

Preparation of Poly(vinylpyrrolidone) Coated Iron Oxide Nanoparticles for Contrast Agent (조영제로 활용하기 위한 폴리(비닐피롤리돈)이 코팅된 산화철 나노 입자의 제조)

  • Lee Ha Young;Lim Nak Hyun;Seo Jin A;Khang Gilson;Kim Jungahn;Lee Hai Bang;Cho Sun Hang
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.266-270
    • /
    • 2005
  • Iron oxide nanoparticles were prepared by the thermal decomposition of iron pentacarbonyl (Fe(CO)$_5$) Poly(vinylpyrrolidone) (PVP) was used as surface-modifying agent to control the size of the iron oxide nanoparticles. The crystalline structure of PVP coated iron oxide nanoparticles was determined by XRD. The size of PVP coated iron oxide nanoparticles was determined by TEM and ELS. The particle sizes of PVP coated iron oxide nanoparticles were controlled by adjusting the molar ratio of PVP/Fe (CO)$_5$, solvent and molecular weight of PVP Particle sizes increased with increasing PVP content. Spherical $50\~100$ nm sized iron oxide nanoclusters were produced when dimethylformamide was used as a solvent. And well-defined 10 nm iron oxide nanoparticles were produced in Carbitol. The prepared PVP coated iron oxide nanoparticles exhibited a well-dispersed property in water. The results obtained in this study confirmed the feasibility of the PVP-coated iron oxide nanoparticles as a biomaterial for MRI contrast agent.

The Development of Theoretical Model for Relaxation Mechanism of Sup erparamagnetic Nano Particles (초상자성 나노 입자의 자기이완 특성에 관한 이론적 연구)

  • 장용민;황문정
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Purpose : To develop a theoretical model for magnetic relaxation behavior of the superparamagnetic nano-particle agent, which demonstrates multi-functionality such as liver- and lymp node-specificity. Based on the developed model, the computer simulation was performed to clarify the relationship between relaxation time and the applied magnetic field strength. Materials and Methods : The ultrasmall superparamagnetic iron oxide (USPIO) was encapsulated with biocompatiable polymer, to develop a relaxation model based on outsphere mechanism, which was resulting from diffusion and/or electron spin fluctuation. In addition, Brillouin function was introduced to describe the full magnetization by considering the fact that the low-field approximation, which was adapted in paramagnetic case, is no longer valid. The developed model describes therefore the T1 and T2 relaxation behavior of superparamagnetic iron oxide both in low-field and in high-field. Based on our model, the computer simulation was performed to test the relaxation behavior of superparamagnetic contrast agent over various magnetic fields using MathCad (MathCad, U.S.A.), a symbolic computation software. Results : For T1 and T2 magnetic relaxation characteristics of ultrasmall superparamagnetic iron oxide, the theoretical model showed that at low field (<1.0 Mhz), $\tau_{S1}(\tau_{S2}$, in case of T2), which is a correlation time in spectral density function, plays a major role. This suggests that realignment of nano-magnetic particles is most important at low magnetic field. On the other hand, at high field, $\tau$, which is another correlation time in spectral density function, plays a major role. Since $\tau$ is closely related to particle size, this suggests that the difference in R1 and R2 over particle sizes, at high field, is resulting not from the realignment of particles but from the particle size itself. Within normal body temperature region, the temperature dependence of T1 and T2 relaxation time showed that there is no change in T1 and T2 relaxation times at high field. Especially, T1 showed less temperature dependence compared to T2. Conclusion : We developed a theoretical model of r magnetic relaxation behavior of ultrasmall superparamagnetic iron oxide (USPIO), which was reported to show clinical multi-functionality by utilizing physical properties of nano-magnetic particle. In addition, based on the developed model, the computer simulation was performed to investigate the relationship between relaxation time of USPIO and the applied magnetic field strength.

  • PDF