• 제목/요약/키워드: iron mine

검색결과 183건 처리시간 0.025초

저 품위 철광석을 사용한 식생용 투수 콘크리트의 중성화 및 제작에 관한 연구 (A Study on Chemical Neutralization and Production of Planting Porous Concrete Using Low-Grade Iron Ore)

  • 은희창;이민수;배충열
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.31-38
    • /
    • 2007
  • Recently produced concrete has a tendency to overcome environmental defects. Porous and planting Eco-concrete requires the neutralization process and enough void in concrete to contain water, to pass air freely, and provides necessary nutrients to vegetation roots. The biological environment in concrete is not suitable for planting because the concrete possesses strong alkali constituent of pH 11-13. This study evaluated the strength and serviceability of concrete as well as the chemical characteristics of concrete mixed by low-grade iron ore left in the abandoned mine and treated by Ammonium monohydrogen phosphate, $(NH_4)_2HPO_4$. Test variables include two kinds of coarse aggregates such as crushed stones and low-grade iron ore, the duration time and the period for neutralization treatment by Ammonium monohydrogen phosphate, $(NH_4)_2HPO_4$, and the proportion ratio of cement, blast furnace slag and silica fume.

  • PDF

저품위 동광석의 세균침출에 관한 연구 2

  • 이강순;민봉희;장정순
    • 미생물학회지
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 1972
  • This experiment was carried out to investigate the physiological characteristics of isolated bacteria, Ferrobacillus ferooxidans from copper mine water in Korea. The results obtained were as follows ; 1. The optimum pH range for the growth of these bacteria was 2.0-3.0 and optimum temperature was $20^{\circ}C$-$30^{\circ}C$. 2. The oxidation curves of ferrous iron to the ferric iron ran parallel with the growth curves. 3. The optimum nitrogen concentration was 400-800 ppm and the minimal flow rate of air for the maximal growth of the bactria was 70 ml air/min./200ml medium. 4. The growth of these bacteria was inhibited by the absence of ferrous iron and by the addition of sulfur. 5. Ferrous iron at a concentration of 9000 ppm, appeared to be optimum for the most rapid growth of Ferrobacillus ferrooxidans.

  • PDF

산성광산배수(AMD) 처리(處理) 슬러지의 중금속(重金屬) 흡착(吸着) 특성(特性) (Adsorption of Heavy Metals on Sludge from the Treatment Process of Acid Mine Drainage)

  • 송영준;이계승;신강호;김윤채;서봉원;윤시내
    • 자원리싸이클링
    • /
    • 제21권4호
    • /
    • pp.35-43
    • /
    • 2012
  • 본 연구는 날로 그 발생량이 증가하고 있는 산성광산배수의 처리과정에서 발생하는 슬러지를 재활용하기 위하여 수행되었으며, 슬러지의 주성분인 수산화철[$Fe(OH)_3$]이 중금속에 대한 흡착 능력이 우수한 점을 이용하여 슬러지를 광해방지용 중금속흡착제의 제조 원료로 활용하기 위한 연구를 수행하였다. 먼저 슬러지의 물성파악을 위하여 슬러지의 화학조성, 광물조성, 입도, 형상 등을 조사하였고 슬러지 첨가량, 시간, pH, 중금속 농도, 소결온도에 따른 중금속 종별 흡착능을 조사 검토하였다.

지사동 출토 제철슬래그의 금속학적 조사 연구 (The Analysis of Slag Exacavated from Jisa area)

  • 박성택;최창옥
    • 보존과학회지
    • /
    • 제16권
    • /
    • pp.64-76
    • /
    • 2004
  • 지사동 출토 슬래그에 대하여 화학적인 분석과 현미경 조직관찰에 의하여 금속학적인 조사연구를 수행하였다. 화학적인 분석은 ICP, XRD, SEM-EDS로 실행하였으며 슬래그 조직은 금속현미경 및 SEM으로 관찰하였다. 화학적 분석 결과, A 및 C 지구 슬래그의 전철량(Total Fe)은 $39\~45\%$ 로 고대 제철과정에서 발생했던 철분의 평균치에 해당하였다. 또한 CaO 성분은 $3\~8\%$로 많은 양은 아니지만 조재제로 Ca성분을 함유한 재료를 소량 사용한 것으로 사료되었다. A지구에서는 Ti성분이 미량 검출되었으며 C지구에선 Ti 성분과 V 성분이 다량 검출되었다. XRD 분석 결과 Fayalite, Wustite, Magnetite, Ilmenite, Pseudo - brookite, Ulvospinel, Forsterite, Fephroite, Olivine 같은 화합물이 검출되었다. 이는 금속현미경 및 SEM에 의한 관찰에서도 위와 같은 조직을 확인하였다. 따라서 A지구의 로에서는 주로 철광석을 이용한 제련작업을 하였고 C지구의 제철로에서는 철광석을 원료로 하는 제련작업과 사철을 원료로 하는 제련작업이 병행되었던 것으로 추정되었다.

  • PDF

(주)동원 사북광업소 갱내수 정화를 위한 물리화학처리시설에 대한 연구 (A Study of Physicochemical treatment facility for Purifying the Mine Water in Dongwon Sabuk Mine., Ltd.)

  • 안종만;이용복;최상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권4호
    • /
    • pp.21-29
    • /
    • 2010
  • As the target area of this study, the coal mine site of Dongwon Sabuk mine.,ltd. is located in the remote mountainous region. To purify the acid mine water contaminated with heavy metals, a pilot-scale plant was built at the surrounded area of a mine shaft and operated to simulate active treatment system that could not only possibly setup the facility in a small available area, but also has a high efficiency. According to the various conditions of basin sequence, existence of sludge return, and lime injection position, six different types of treatment series were investigated in terms of treatment efficiency. As a result, the aluminum concentrations of the most effluents were in the range of 0.005~0.030 mg/L, which was too low to compare. The manganese concentration in the treated water were in the range of 3~9 mg/L, not following any regular trend. As found in the results of iron concentration, the case of addition of oxidation and sludge return steps showed higher efficiency than the others. As a standpoint of the installation of full-scale physicochemical treatment facility, the experimental results showed that the batch of oxidation and high density sludge return processes are existed and neutralization was followed by oxidation, had a stable treatment efficiency.

지속가능한 휴폐광산 관리 및 공해 방지를 위한 환경.광산 지리정보체계 구축 및 개선 연구 - 환경부분 중심으로 - (A Study on Environmental.Mine Geographic Information System Approach for the Sustainable Mine Management and Prevention of Mine Hazards - Focused on the Environmental Section -)

  • 이주영;한무영;양중석;최재영
    • 환경정책연구
    • /
    • 제8권1호
    • /
    • pp.129-143
    • /
    • 2009
  • 국내 광산은 1960년대 및 70년대에 원료자원확보를 위한 기간산업으로 육성 개발되었고, 90년대 이후 광량 고갈 및 국제자원가격 하락으로 인한 채산성 악화로 거의 대부분의 광산이 폐광되었으며, 대다수의 폐광산의 폐광석 및 광미 적치장의 관리가 불안전하여 오염물질의 확산으로 토양과 수질이 오염되고 있는 실정이다. 이러한 토양오염실태에도 불구하고 정확한 중금속 오염원 파악 및 위해성을 인지하지 못한 상태에서 지속적으로 환경오염에 노출되어 있어, 이로 인한 주변생태계 파괴가 우려되는 상황이다. 이에 본 논문에서는 현재 진행 중인 지속가능한 휴폐광산 정화 및 관리를 위한 기존 환경 광산지리정보시스템 활용뿐만 아니라 추가적 기능 확대방법에 관한 제언을 통해 정책결정자 및 관리자들이 체계적이고 통합적인 광해방지정책 마련과 사업에 이바지할 수 있도록 할 것이다.

  • PDF

천연광물을 이용한 황철석 표면 코팅을 통한 폐광산 산성배수 저감 기술 개발 (Developing for Reduction Technology of AMD through Coating on the Surface of Pyrite Using Minerals)

  • 윤현식;지은도;지민규;이우람;양중석;박영태;권현호;지원현;김기준;전병훈;최재영
    • 한국지반환경공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.15-22
    • /
    • 2011
  • 본 연구에서는 폐광산의 산성광산배수(Acid Mine Drainage, AMD)의 발생을 억제하기 위해 산성광산배수의 주원인인 황철석 표면을 천연광물 및 시멘트를 사용하여 화학적으로 코팅하여 산성광산배수의 문제를 해결하고자 한다. 표면 코팅에 필요한 철이온의 생성을 위해 먼저 산화제 $H_2O_2$, NaClO 를 이용하여 표준황철석, 영동탄광, 신림광산 시료의 표면을 산화시켰다. 그리고 천연광물(인회석(Apatite), 석회석(Limestone), 망간광(Mangnite), 돌로마이트(Dolomite), 벤토나이트(Bentonite), 시멘트(Cement))를 이용하여 발생된 철이온과 천연광물의 이온을 결합시켜 표면 코팅을 진행하였다. 그 결과 시멘트와 시료의 양을 1:1로 이용하고 4일 이상 진행하였을 때 위의 실험조건에서 가장 효과적으로 황철석의 표면을 코팅하여 ${SO_4}^{2-}$의 발생이 억제되었다.

전기분해 복합공정을 이용한 산성광산배수 실증처리 연구 (Field-Scale Treatment of Acid Mine Drainage by Hybrid Electrolysis Process)

  • 성일종;박승일;양재규;배세달;김해금;최상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.142-152
    • /
    • 2014
  • In this study, generic characteristics of the acid mine drainage (AMD), removal efficiency of iron, aluminium and manganese by chemical treatment, electrolysis and hybrid process using electrolysis after neutralization were evaluated. The pH of AMD was inversely proportional to the rainfall. In dry-season, the average pH of AMD was ranged from 4.5 to 5.5, showing slight variation. However, the pH of AMD was gradually decreased along with rainfall and dropped to 3.02 in September showing the greatest rainfall. Removal efficiency of heavy metals by chemical treatments using three different neutralizing agents or by electrolysis was low. However, a hybrid process performed with electrolysis after addition of neutralization shows higher removal capacity for heavy metal ions than neutralization-alone and electrolysisalone process.

덕음광산 선광광미와 주변토양의 중금속에 대한 수평.수직적인 분산에 관한 연구 (A Study on the Horizontal and Vertical Distribution of Heavy Metal Elements in Slime Dump from Dukum Mines, Korea)

  • 박영석
    • 자원환경지질
    • /
    • 제33권2호
    • /
    • pp.91-100
    • /
    • 2000
  • It has been more than ten years since Dukun mine was abandoned. Tailings of waste deposits and slime dumps in the abandoned Dukum mine have been left to be deserted for fifty years. The results of fifty years of neglecting are nothing short of major environmental problems. Slime dumps have been exposed to air and water in the mine over ten years and then soil profile has been formed well. Soil in the upper layer (A horizon) is the light gray color due to the leaching of cations. Soil in the lower layer (A2 horizon, 0.2∼0.3m)is tinted with reddish brown and yellowish brown color due to the development of iron oxides and iron hydroxides. Soil in the lower part of B horizon of (1.0∼3.0m) with the growth of copper and zinc oxides exposes to the bluish green, light blue, and dark gray. Ranging from 3m to 8m in depth, 85 samples were taken from 22 sampling sites with 50m intervals located on the slime dump area with hand auger and trench (open cut). As tailings was distributed, heavy metal elements extracted by the process of surface water and ground water move and disperse in to the hydrosphere. Waste dumps were distributed in and around the mine and water draining from those dumps be a potential source of contamination. Soils, thus, can be dispersed into downslope and downstream through wind and water by clastic movement. These materials may be deposited in another horizon if the water is withdrawn, or if the materials are precipitated as a result of differences in pH, or other conditions in deeper horizons. These were primarily associated with acid mine drainage. The characteristics and rate of release of acid mine drainage are influenced by various chemical and biological reactions at the source of acid generations. Prolonged extration of heavy metal elements has a detrimental effect on the agricultural land and residental area. Twenty soil samples were collected from the agricultural land in the area (0∼30 cm). Seventeen samples were also taken from the sediment in the stream running alongside the dumps. The dispersion patterns of heavy metal elements are as follows: The content of As ranged 2∼6 ppm in a horizon, 20∼125 ppm in B horizon with large amount of clay mineral is concentrated and the content of Cd ranged 1∼2 ppm in A horizon, 4∼22 ppm in B horizon. Like Cd, the content of As, Cu, Zn, Pb in B horizon is higher than that in A horizon (approximately 5∼100 times). When soil formation proceeds in stages, it is necessary to investicate the B horizon with the concentration of heavy metal and preventive measures will have to established.

  • PDF

Evaluating Efficiency of Coal Combustion Products (CCPs) and Polyacrylamide (PAM) for Mine Hazard Prevention and Revegetation in Coal Mine Area

  • Oh, Se Jin;Oh, Seung Min;Ok, Yong Sik;Kim, Sung Chul;Lee, Sang Hwan;Yang, Jae E.
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.525-532
    • /
    • 2014
  • Since mine wastes were merely dumped in the mine waste dump, they have produced acid mine drainage (AMD). Therefore, main objective of this study was to evaluate the effect of coal combustion products (CCPs) on heavy metal stabilization and detoxification for mine wastes. Total six treatments for incubation test were conducted depending on mixing method (completely mixing and layered). Also, lysimeter experiment was conducted to examine efficiency of polyacrylamide (PAM) on reduction of mine wastes erosion. Result of incubation test showed that concentrations of soluble aluminium (Al) and iron (Fe) in leachate decreased compared to control. The lowest soluble Al and Fe in leachate was observed in 50% mixed treatment (14.2 and $1.03mg\;kg^{-1}$ for Al and Fe respectively) compared to control treatment (253.0 for Al and $52.6mg\;kg^{-1}$ for Fe). The pH of mine wastes (MW) and leachate increased compared to control after mixing with CCPs and ordered as control (MW 6.4, leachate 6.3) < 10% (MW 7.7, leachate 7.1) < 20% (MW 9.0, leachate 7.8) < 30% (MW 9.5, leachate 8.3) < 40% (MW 9.9, leachate 8.5) < 50% (MW 10.5, leachate 8.6). Application of PAM, both in liquid and granular type, dramatically decreased the suspended solid (SS) concentration of CCPs treatments. Reduction of SS loss was ordered as MW70CR30L ($24.4mg\;L^{-1}$) > MW70CR30LPL ($6.7mg\;L^{-1}$) > NT ($3.1mg\;L^{-1}$) > MW70CR30M ($1.6mg\;L^{-1}$) > MW70CR30MPL ($1.1mg\;L^{-1}$) > MW70CR30PGM ($0.7mg\;L^{-1}$) > MW70CR30LPG ($0.5mg\;L^{-1}$) > MW70CR30MPG ($0.4mg\;L^{-1}$). Overall, application of CCPs can be environmental friendly and cost-effective way to remediate coal mine wastes contaminated with heavy metals. In addition, use of PAM could help to prevent the erosion coal mine wastes in mine waste disposal area.