• 제목/요약/키워드: iron loss compensation

검색결과 7건 처리시간 0.021초

히스테리시스 특성을 고려한 전압 변성기 오차 개선 방법 (Method for improving the accuracy of a voltage transformer considering hysteresis characteristics)

  • 강용철;이범은;박종민;차선희;장성일;김용균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.208-209
    • /
    • 2006
  • Voltage Transformer is used to transform high voltage into low voltage to input signal of protection relay. Most of the Voltage Transformers use the iron core which maximizes the flux linkage. The ratio of the Voltage Transformer depends on the transformer turns ratio. The current which flows in the Voltage Transformer has non-linear characteristic caused by hysteresis of the iron core, it causes a voltage loss in the winding impedances which makes measurement errors. This paper describes an error compensation method considering hysteresis characteristic. The proposed compensation method improves error by calculating the primary current from the exciting current of the hysteresis loop in the Voltage Transformer, compensating the voltage loss.

  • PDF

측정용 전압 변성기 오차 보상 알고리즘 (Compensation Algorithm for a Measurement Voltage Transformer)

  • 강용철;박종민;이미선;장성일;김용균
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.761-766
    • /
    • 2008
  • This paper describes a compensation algorithm for a measurement voltage transformer (VT) based on the hysteresis characteristics of the core. The error of the VT is caused by the voltages across the primary and secondary windings. The latter depends on the secondary current whilst the former depends on the primary current, i.e. the sum of the exciting current and the secondary current. The proposed algorithm calculates the voltages across the primary and secondary windings and add them to the measured secondary voltage for compensation. To do this, the primary and secondary currents should be estimated. The secondary current is obtained directly from the secondary voltage and used to calculate the voltage across the secondary winding. For the primary current, in this paper, the exciting current is decomposed into the two currents, i.e. the core-loss current and the magnetizing current. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. The magnetizing current is obtained by inserting the flux into the flux-magnetizing current curve. The calculated voltages across the primary and secondary windings are added to the measured secondary current for compensation. The proposed compensation algorithm improves the error of the VT significantly.

자속-자화 전류 곡선과 전압-철손 전류 곡선을 이용한 측정용 철심 변류기의 보상 알고리즘 개발 (Development of a Compensating Algorithm for an Iron-cored Measurement CT using Flux-magnetizing Current Curves and Voltage-core Loss Current Curves)

  • 강용철;정태영;강해권;이병은;김용균
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1849-1854
    • /
    • 2009
  • This paper describes the design, evaluation and implementation of a compensating algorithm for an iron-cored measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error of the CT. The proposed algorithm decomposes the exciting current into the core loss current and the magnetizing current and each of them is estimated. The core loss current is calculated from the secondary voltage and the voltage-core loss current curve. The core flux linkage is calculated and then inserted into the flux-magnetizing current curve to estimate the magnetizing current. The exciting current at every sampling interval is obtained by summing the core loss and magnetizing currents and then added to the measured current to obtain the correct secondary current. The voltage-core loss current curve and flux-magnetizing current curves, which are different from the conventional curves, are derived in this paper. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The experimental test results of an iron-core type electronic CT, which consists of the iron-core and the compensation board, are also included. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the CT.

히스테리시스 특성을 고려한 전압 변성기 오차 보상 알고리즘 (Compensation algorithm of a voltage transformer considering hysteresis characteristics)

  • 강용철;정태영;박종민;장성일;김용균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.12-14
    • /
    • 2007
  • A voltage transformer (VT) is used to transform a high voltage into a low voltage as an input for a metering device or a protection relay. VTs use an iron core which maximizes the flux linkage. The primary current of the VT has non-fundamental components caused by the hysteresis characteristics of the iron core. It causes a voltage drop in the winding impedances resulting in the error of the VT. This paper describes a compensation algorithm for the VT. The proposed algorithm can compensate the secondary voltage of VT by calculating the primary current from the exciting current of the hysteresis loop in the voltage transformer. In this paper, the exciting branch was divided into a non-linear core loss resistor and a non-linear magnetizing inductor. The performance of the proposed algorithm was validated under various conditions using EMTP generated data. Test results show that the proposed compensation algorithm can improve the accuracy of the VT significantly.

  • PDF

Sensorless Sine-Wave Controller IC for PM Brushless Motor Employing Automatic Lead-Angle Compensation

  • Kim, Minki;Heo, Sewan;Oh, Jimin;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1165-1175
    • /
    • 2015
  • This paper presents an advanced sensorless permanent magnet (PM) brushless motor controller integrated circuit (IC) employing an automatic lead-angle compensator. The proposed IC is composed of not only a sensorless sine-wave motor controller but also an isolated gate-driver and current self-sensing circuit. The fabricated IC operates in sensorless mode using a position estimator based on a sliding mode observer and an open-loop start-up. For high efficiency PM brushless motor driving, an automatic lead-angle control algorithm is employed, which improves the efficiency of a PM brushless motor system by tracking the minimum copper loss under various load and speed conditions. The fabricated IC is evaluated experimentally using a commercial 200 W PM brushless motor and power switches. The proposed IC is successfully operated without any additional sensors, and the proposed algorithm maintains the minimum current and maximum system efficiency under $0N{\cdot}m$ to $0.8N{\cdot}m$ load conditions. The proposed IC is a feasible sensorless speed controller for various applications with a wide range of load and speed conditions.

동기 리럭턴스 전동기의 고성능 운전을 위한 효율 최적화 제어 (Efficiency Optimization Control for High Performance Operation of Synchronous Reluctance Motor)

  • 정동화;이정철;이홍균
    • 한국안전학회지
    • /
    • 제16권2호
    • /
    • pp.51-56
    • /
    • 2001
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor (SynRM) which minimizes the copper and iron losses. fen exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

유도전동기 고정자자속 기준제어의 최대효율제어 (Maximum Efficiency Control of a Stator Flux-Oriented Induction Motor Drive)

  • 신명호
    • 조명전기설비학회논문지
    • /
    • 제20권4호
    • /
    • pp.117-122
    • /
    • 2006
  • 입력이 최소가 되는 자속의 값을 찾는 유도전동기 고정자자속기준제어의 최대효율제어방법을 제안한다. 제안한 방법에서, 정해진 자속의 값만큼씩 기준자속의 값을 변화시키면서 직류링크에서 측정된 입력의 값이 최소가 되는 기준자속의 값을 찾는다. 또한 철손저항을 고려한 유도전동기의 모델을 이용하여 철손저항을 고려한 토크, 슬립각 속도, 비간섭 보상전류식을 사용한다. 시뮬레이션 및 실험결과를 통해서 제안한 방법의 효과를 입증한다.