• Title/Summary/Keyword: iron ion

Search Result 403, Processing Time 0.026 seconds

Formation of surface mediated iron colloids during U(VI) and nZVI interaction

  • Shin, Youngho;Bae, Sungjun;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.167-177
    • /
    • 2013
  • We investigated that removal of aqueous U(VI) by nano-sized Zero Valent Iron (nZVI) and Fe(II) bearing minerals (controls) in this study. Iron particles showed different U(VI) removal efficiencies (Mackinawite: 99%, green rust: 95%, nZVI: 91%, magnetite: 87%, pyrite: 59%) due to their different PZC (Point of Zero Charge) values and surface areas. In addition, noticeable amount of surface Fe(II) (181 ${\mu}M$) was released from nZVI suspension in 6 h and it increased to 384 ${\mu}M$ in the presence of U(VI) due to ion-exchange of U(VI) with Fe(II) on nZVI surface. Analysis of Laser-Induced Breakdown Detection (LIBD) showed that breakdown probabilities in both filtrates by 20 and 200 nm sizes was almost 24% in nZVI suspension with U(VI), while 1% of the probabilities were observed in nZVI suspension without U(VI). It indicated that Fe(II) colloids in the range under 20 nm were generated during the interaction of U(VI) and nZVI. Our results suggest that Fe(II) colloids generated via ion-exchange process should be carefully concerned during long-term remediation site contaminated by U(VI) because U could be transported to remote area through the adsorption on Fe(II) colloids.

A Basic Study on the Removal of Iron Ion in Waste Water by the Precipitation Method (침전법에 의한 폐수중의 철이온 제거에 관한 기초 연구)

  • 강동현;김형석;조동성
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.16-21
    • /
    • 1993
  • This study was carried out to investigate the settling characteristics of Fe(II) and Fe(III) hydroxide precipitates formed by pH adjustment of aqueous solution to remove ferrous and ferric ion in waste water. The results obstained in this study are as fellows : The settling rate was effectively increased with increasing the pH values of aqueous solution regulated by CaO and with increasing the amount of flocculant, on the other hand, application of excess flocculants decreased the settling rate. It is desirable that the concentration of iron ion is kept under $10^{-2}$ mol/ㅣ because the settling rate was decreased with increasing the concentration of iron hydroxide precipitates.

  • PDF

Zinc Ions Affect Siderophore Production by Fungi Isolated from the Panax ginseng Rhizosphere

  • Hussein, Khalid Abdallah;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.105-113
    • /
    • 2019
  • Although siderophore compounds are mainly biosynthesized as a response to iron deficiency in the environment, they also bind with other metals. A few studies have been conducted on the impact of heavy metals on the siderophore-mediated iron uptake by microbiome. Here, we investigated siderophore production by a variety of rhizosphere fungi under different concentrations of $Zn^{2+}$ ion. These strains were specifically isolated from the rhizosphere of Panax ginseng (Korean ginseng). The siderophore production of isolated fungi was investigated with chrome azurol S (CAS) assay liquid media amended with different concentrations of $Zn^{2+}$ (50 to $250{\mu}g/ml$). The percentage of siderophore units was quantified using the ultra-violet (UV) irradiation method. The results indicated that high concentrations of $Zn^{2+}$ ion increase the production of siderophore in iron-limited cultures. Maximum siderophore production by the fungal strains was detected at $Zn^{2+}$ ion concentration of $150{\mu}g/ml$ except for Mortierella sp., which had the highest siderophore production at $200{\mu}g/ml$. One potent siderophore-producing strain (Penicillium sp. JJHO) was strongly influenced by the presence of $Zn^{2+}$ ions and showed high identity to P. commune (100% using 18S-rRNA sequencing). The purified siderophores of the Penicillium sp. JJHO strain were chemically identified using UV, Fourier-transform infrared spectroscopy (FTIR), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) spectra.

Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte

  • Kim, Jineun;Lee, Suhyun;Kim, Kun Woo;Son, Jungman;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.424-430
    • /
    • 2021
  • The element iron (Fe) is affordable and abundantly available, and thus, it finds use in a wide range of applications. As regards its application in rechargeable lithium-ion batteries (LIBs), the electrochemical reactions of Fe must be clearly understood during battery charging and discharging with the LIB electrolyte. In this study, we conducted systematic electrochemical analyses under various voltage conditions to determine the voltage at which Fe corrosion begins in general lithium salts and organic solvents used in LIBs. During cyclic voltammetry (CV) experiments, we observed a large corrosion current above 4.0 V (vs. Li/Li+). When a constant voltage of 3.7 V (vs. Li/Li+), was applied, the current did not increase significantly at the beginning, similar to the CV scenario; on the other hand, at a voltage of 3.8 V (vs. Li/Li+), the current increased rapidly. The impact of this difference was visually confirmed via scanning electron microscopy and optical microscopy. Our X-ray photoelectron spectroscopy measurements showed that at 3.7 V, a thick organic solid electrolyte interphase (SEI) was formed atop a thin fluoride SEI, which means that at ≥3.8 V, the SEI cannot prevent Fe corrosion. This result confirms that Fe corrosion begins at 3.7 V, beyond which Fe is easily corrodible.

The study of manganese removal mechanism in aeration-sand filtration process for treating bank filtered water (강변여과수 처리를 위한 포기-모래여과공정에서 망간제거 기작에 관한 연구)

  • Choi, Seung-Chul;Kim, Se-Hwan;Yang, Hae-Jin;Lim, Jae-Lim;Wang, Chang-Keun;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.341-349
    • /
    • 2010
  • It is well known that manganese is hard to oxidize under neutral pH condition in the atmosphere while iron can be easily oxidized to insoluble iron oxide. The purpose of this study is to identify removal mechanism of manganese in the D water treatment plant where is treating bank filtered water in aeration and rapid sand filtration. Average concentration of iron and manganese in bank filtered water were 5.9 mg/L and 3.6 mg/L in 2008, respectively. However, their concentration in rapid sand filtrate were only 0.11 mg/L and 0.03 mg/L, respectively. Most of the sand was coated with black colored manganese oxide except surface layer. According to EDX analysis of sand which was collected in different depth of sand filter, the content of i ron in the upper part sand was relatively higher than that in the lower part. while manganese content increased with a depth. The presence of iron and manganese oxidizing bacteria have been identified in sand of rapid sand filtration. It is supposed that these bacteria contributed some to remove iron and manganese in rapid sand filter. In conclusion, manganese has been simultaneously removed by physicochemical reaction and biological reaction. However, it is considered that the former reaction is dominant than the latter. That is, Mn(II) ion is rapidly adsorbed on ${\gamma}$-FeOOH which is intermediate iron oxidant and then adsorbed Mn(II) ion is oxidized to insoluble manganese oxide. In addition, manganese oxidation is accelerated by autocatalytic reaction of manganese oxide. The iron and manganese oxides deposited on the surface of the sand and then are aged with coating sand surface.

Optical Characteristics of Iron Silicide Films Prepared by Plasma CVD (Plasma CVD에 의해 제조된 Iron Silicide 박막의 광학적 특성)

  • Kim, Kyung-soo;Yoon, Yong-soo;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.343-348
    • /
    • 1999
  • The iron silicide films were prepared by chemical vapor deposition method using rf-plasma in variations of substrate temperature. rf-power, and ratio of $SiH_4$ and Fe-precursor. While iron silicide films are generally grown by ion beam synthesis (IBS) method of multi-step process, it is confirmed that iron silicide or $\beta$-phase consolidated $Fe_aSi_bC_cH_d$ was formed by one-step process in this study. The characteristics of films is variable because the different amounts of carbon and hydrogen was involved in the films as a function of dilute ratio of Fe-precursors and silane. It was shown that the different characteristics of films in carbon and hydrogen following the ratio of Fe-precursor and silane. The optical gap energy of films fabricated according to substrate temperature was invariant because active site brought in desorption of hydrogen was limiled. When rf-power was above 240 watt, the optical gap energy turned out to have high values because of dangling bonds increased by etching.

  • PDF

Sanitary Chemical Conditions of Farmwaters in Choongcheongnam and Kangwon Province According to Spring and Summer (충청남도 및 강원도 목장지역 목장용수의 춘하절간 위생화학적 변화)

  • 이강문;박석기;이용욱
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.4
    • /
    • pp.229-235
    • /
    • 1994
  • It is very important to investigate the sanitary chemical conditions of farmwaters used for cattle breeding in the dairy farms. For this purpose we examined pH, KMnO4 consumption, total hardness, chloride, sulfate, NH3-N, NO3-N, fluoride, lead, iron, manganese, cadmium, copper, zinc and chrome in the farmwaters sampled 2 times(spring and summer)in Choongcheongnam and Kangwon Province. The pH of farmwaters in Choongcheongnam and Kangwon Province was 6.49$\pm$0.09, 6.70$\pm$0.06, total hardness 90.21$\pm$7.07, 64.53$\pm$6.38 mg/ι, consumption of KMnO4 4.13$\pm$0.62, 4.34$\pm$0.26mg/ι, NO3-N 6.51$\pm$0.55, 3.61$\pm$0.58 mg/ι, chloride ion 20.51$\pm$1.99, 5.41$\pm$1.36 mg/ι and sulfate ion 6.61$\pm$1.02, 7.28$\pm$1.30 mg/ι, respectively. But NH3-N was scarcely detected. Fluoride, iron, lead, cadmium, zinc, manganese and chrome were not detected from the tested farmwaters. There was high significance between each other in total hardness, NO3-N, chloride ion and sulfate ion. There was regional and seasonal significance in only NO3-N but only regional significance in total hardness and chloride ion.

  • PDF

Study on the Light-Induced Mitochondrial ATPase$(F_1-ATPase)$ Activated by Iron ion in Mushroom (버섯중 철이온에 활성화된 광감응성 Mitochondrial ATPase에 관한 연구)

  • Min, Tae-Jin;Lee, Mi-Ae;Park, Sang-Shin
    • The Korean Journal of Mycology
    • /
    • v.21 no.3
    • /
    • pp.157-164
    • /
    • 1993
  • The effects of the iron ions on the light-induced mitochondrial $F_1-ATPase$ in Lentinus edodes was studied. This enzyme activity was stimulated by each of the ferric, ferrous and magnesium ion. Especially, the activity of the enzyme by 5.0 mM ferric ion increased up to 107% in comparision with control group(100%). In the presence of magnesium ion, each of ferric and ferrous ion increased the activity of the enzyme, particulary, coexistence of 0.1 mM magnesium and 5.0 mM ferric ion increased the activity up to 270% with magnesium ion dependence. The activity of the enzyme was stimulated up to 268% by 5.0 mM ferric ion in the presence of 0.1 mM magnesium and 0.1 mM ferrous ion. Therefore, the coexistence of ferrous ion did not affect the activity. From the above, we propose that light-induced mitochondrial $F_1-ATPase$ in Lentinus edodes is a $Mg^{2+}{\cdot}Fe^{3+}{\;}F_1-ATPase.$ The optimal pH and temperature for the enzyme were 7.5 and $66^{\circ}C$ respectively.

  • PDF

The Effect of Iron Catalysts on the Formation of Alcohol and Ketone in the Biomimetic Oxidation of Cyclohexane

  • Kim Seong-Bo;Lee Kyu-Wan;Kim, Yong-Joon;Hong Seog-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.424-427
    • /
    • 1994
  • Effects of iron compounds in known biomimetic oxidation systems (Gif IV and GoAgg II) have been studied on activity and ketone/alcohol selectivity of cyclohexane oxidation. Both ketone/alcohol ratio and cyclohexane conversion were affected by counter-ion Z of iron compounds Z-Fe. When Z has a more electron withdrawing property, the reactivity is increased and the formation of ketone is favored. From these experimental results, a new mechanism is proposed for the biomimetic oxidation system.

Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials (폐리튬인산철 양극재로부터 리튬의 선침출 및 인과 철의 개별적 분리 회수 연구)

  • Hee-Seon Kim;Boram Kim;Dae-Weon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.28-36
    • /
    • 2024
  • As demand for electric vehicles increases, the market for lithium-ion batteries is also rapidly increasing. The battery life of lithium-ion batteries is limited, so waste lithium-ion batteries are inevitably generated. Accordingly, lithium was selectively preleached from waste lithium iron phosphate (LiFePO4, hereafter referred to as the LFP) cathode material powder among lithium ion batteries, and iron phosphate (FePO4) powder was recovered. The recovered iron phosphate powder was mixed with alkaline sodium carbonate (Na2CO3) powder and heat treated to confirm its crystalline phase. The heat treatment temperature was set as a variable, and then the leaching rate and powder characteristics of each ingredient were compared after water leaching using Di-water. In this study, lithium showed a leaching rate of approximately 100%, and in the case of powder heat-treated at 800 ℃, phosphorus was leached by approximately 99%, and the leaching residue was confirmed to be a single crystal phase of Fe2O3. Therefore, in this study, lithium, phosphorus, and iron components were individually separated and recovered from waste LFP powder.