• Title/Summary/Keyword: iron electrolysis

Search Result 32, Processing Time 0.024 seconds

Diamond micro-cutting of the difficult -to -cut materials using Electrolysis (전기분해를 이용한 난삭재의 다이아몬드 미세가공)

  • 손성민;손민기;임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.951-954
    • /
    • 2000
  • This paper presents a new cutting method, i.e. diamond cutting, aided by electrolysis, in order to cut ferrous materials with diamond tools. Diamond cutting is widely applied in manufacturing ultraprecision parts such as magnetic disk, polygon mirror, spherical/non-spherical mirror and copier drum, etc. because of the diamond tool edge sharpness. In general, however, diamond cutting cannot be applied to cutting steels, because diamond tools wear excessively in cutting iron based materials like steel due to their high chemical interaction with iron in high temperature. In order to suppress the diffusion of carbon from the diamond tool and to reduce increase of cutting force due to size effect, we attempt to change chemically the compositions of iron based materials using electrolysis in a limited part which will be soon cut. Through experiments under several micro-machining and electrolysis conditions, cutting using electrolysis, compared to conventional cutting, was found to result in a great decrease of the cutting force, a better surface and much less wear tool.

  • PDF

A Characteristic of Nitrogen and Phosphorus Removal in Anoxic/Oxic Basins combined with Iron Electrolysis (철 전기분해장치와 무산소/호기공정을 결합한 질소, 인제거 특성에 관한 연구)

  • Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.525-531
    • /
    • 2017
  • Objectives: The purpose of this experiment is to better understand the nitrogen and phosphorus removal ratio according to operating conditions in an iron electrolysis system consisting of an anoxic basin, aerobic basin, and iron precipitation apparatus. Methods: Iron electrolysis consists of an iron precipitation reactor composed of iron plates in oxic and anoxic basins. We studied the interrelation coefficient between T-N and T-P removal rates and F/M ratio, and the C/N ratio and BOD removal rate. Results: The F/M ratio and the T-N and T-P removal rate per unit area have interrelation coefficients of 0.362 and 0.603, respectively. The removal rate per MLVSS and the T-N and T-P removal rate per unit area have respective interrelation coefficients of 0.49 and 0.59. Conclusions: The removal rate of T-N and T-P increased with the increasing F/M ratio in the influent, and they also linearly increased in proportion to the C/N ratio of influent and BOD removal rate of the reactor.

A Study on Phosphorus Removal Effects Per Iron Surface Area in FNR Process (철전기분해장치(FNR)에서 철판의 표면적이 인제거에 미친 영향에 관한 연구)

  • Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.568-574
    • /
    • 2012
  • Objectives: The purpose of this experiment is to understand the phosphorus removal ratio effects of iron plates per unit of surface area through the iron electrolysis system, which consists of an anoxic basin, aerobic basin, and iron precipitation apparatus. Methods: Iron electrolysis, which uses an iron precipitation reactor in anoxic and oxic basins, consisted of iron plates with total areas of 400 $cm^2$, 300 $cm^2$ and 200 $cm^2$ respectively. The FNR process was operated with a hydraulic retention time and a sludge retention time of 12 hours and three days, respectively. Wastewater used in the experiments was prepared by dissolving $KH_2PO_4$ in influent water. Results: The iron plates 400 $cm^2$ (16.6 $mA/cm^2$), 300 $cm^2$ (13.3 $mA/cm^2$) and 200 $cm^2$ (7.3 $mA/cm^2$) in surface area in the phosphorus reactor had respective phosphorus of 2.4 mg/l, 2.7 mg/l and 3.2 mg/l in the effluent and phosphorus removal respective efficiencies of 90.3%, 89.1% and 87.1%. The effluent in the reactor, where the iron plate was not used, had relatively very low phosphorus removal efficiency showing phosphorus concentration of 15.3 mg/l and a phosphorus removal efficiency about 38.3%. Phosphorus removal per ferrous was 0.472 mgP/mgFe in the iron electrolysis system where the surface area of iron was low. Phosphorus pollution load per active surface area and the phosphorus removal efficiency had an interrelation of RE = -0.27LS + 89.0 (r = 0.85). Conclusion: With larger iron plate surface area, the elution of iron concentration and phosphorus removal efficiency was higher. The removal efficiency of phosphorus has decreased by increasing the initial phosphate concentration in the iron electrodes. This shows a tendency of decreasing phosphorus removal efficiency because of decreasing of iron deposition as the phosphorus pollution load per active surface area increases.

A Study on Nitrogen and Phosphorus Removal in FNR Process (FNR process를 이용한 하수처리장의 질소.인의 제거에 관한 연구)

  • Cho Il-Hyoung;Lee Nae-Hyun;Lee Seung-Mok;Kim Young-Kyu
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.571-577
    • /
    • 2006
  • This study make a comparison between the phosphorus removal performance of FNR(Ferrous Nutrient Removal) process and A/O process by the laboratory experiments. For simultaneous removal of phosphorus, iron electrolysis was combined with oxic tank. Iron precipitation reactor on the electrochemical behaviors of phosphorus in the iron bed. The phosphorus removal in FNR process was more than A/O process. Iron salts produced by iron electrolysis might help to remove COD and nitrogen. And the demanded longer SRT is the more removes the removes COD, nitrogen, and phosphorus. Also, FNR process of sludge quantity more reduce than A/O process to input cohesive agents.

Recovery of Pure Electrolytic Iron from Wasted Hydrochloric Pickling Solution of Steel (철강의 염산산세 폐액으로부터 전해철의 제조에 관한 연구)

  • 김기호;권오익;홍성규
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 1993
  • Iron component in wasted hydrochloric etching solutions from steel works were recovered by electrolysis. The electric conductances of the solutions, as the function of the bath temperature and the ferrousion concen-tration, were measured and the result of the original solution was K=(0.0012+0.0005$\times$10-3T-0.1160$\times$10-6T2)$\times$102S.m-1(T in $^{\circ}C$) The current efficiency was better for the bath using a soluble steel plate anode than for the bath using an insoluble platinized titanium one. Densed electrolytic iron having the purity of higher than 99.99% was ob-tained at the electrolysis conditions of the cathodic current density of 15A/dm2, the bath temperature of $70\pm$$5^{\circ}C$ and the ferrous ion concentration of about 100g/l. The morphologies of the deposited iron were observed by SEM.

  • PDF

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.

A Study on the Characteristics of Compounding Electrolytic Machining in micro-cutting (전해복합에 의한 미세절삭가공 특성연구)

  • Son, M.K.;Son, S.M.;Ahn, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.502-506
    • /
    • 2001
  • This paper presents a new method for cutting steel with a diamond tool using electrolysis. The electrolysis is adopted in the diamond cutting to prevent the high chemical activity between a diamond tool and an iron-based workpiece. The basic principle of the method is to oxdize a thin substrate of the workpiece by electrolysis ahead of the diamond tool which cuts the oxidized layer. A desired shape can be obtained by repeating this process. The cutting force is reduced because the diamond tool removes only the weakened material by electroysis. The reduction of the cutting force suppresses the excessive wear of the diamond tool. The oxidization penetrates several micrometers in depth along the previously formed shape. The corrosion rates depend on current density and make suggestions on the optimum cutting conditions.

  • PDF

Field-Scale Treatment of Acid Mine Drainage by Hybrid Electrolysis Process (전기분해 복합공정을 이용한 산성광산배수 실증처리 연구)

  • Sung, Il-Jong;Pak, Seung-Il;Yang, Jae-Kyu;Bae, Se-Dal;Jin, Hai-Jin;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.142-152
    • /
    • 2014
  • In this study, generic characteristics of the acid mine drainage (AMD), removal efficiency of iron, aluminium and manganese by chemical treatment, electrolysis and hybrid process using electrolysis after neutralization were evaluated. The pH of AMD was inversely proportional to the rainfall. In dry-season, the average pH of AMD was ranged from 4.5 to 5.5, showing slight variation. However, the pH of AMD was gradually decreased along with rainfall and dropped to 3.02 in September showing the greatest rainfall. Removal efficiency of heavy metals by chemical treatments using three different neutralizing agents or by electrolysis was low. However, a hybrid process performed with electrolysis after addition of neutralization shows higher removal capacity for heavy metal ions than neutralization-alone and electrolysisalone process.

Preparation and Characterization of Fe-Ni Nanocatalyst for AEM Electrolysis via Spontaneous Reduction Reaction in Dry Process (건식 공정에서 자발적 환원 반응에 의한 AEM 수전해용 Fe-Ni 나노 촉매 제조 및 특성)

  • JAEYOUNG LEE;HONGKI LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.185-194
    • /
    • 2024
  • Fe-Ni nanocatalysts loaded on carbon black were prepared via spontaneous reduction reaction of iron (II) acetylacetonate and nickel (II) acetylacetonate in dry process. Their morphology and elemental analysis were characterized by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analyzer. The loading weight of the nanocatalysts was measured by thermogravimetric analyze and the surface area was measured by BET analysis. TEM observation showed that Fe and Ni nanoparticles was well dispersed on the carbon black and their average particle size was 4.82 nm. The loading weight of Fe-Ni nanocatalysts on the carbon black was 6.83-7.32 wt%, and the value increased with increasing iron (II) acetylacetonate content. As the Fe-Ni loading weight increased, the specific surface area decreased significantly by more than 50%, because Fe-Ni nanoparticles block the micropores of carbon black. I-V characteristics showed that water electrolysis performance increased with increasing Ni nanocatalyst content.

Phosphorus Removal (Characteristics by Anoxic Oxic Process) by Anoxic and Oxic Processed Combined with Iron Electrolysis (철 석출장치가 결합된 무산소.호기공정에 의한 인 제거 특성)

  • Kim, Min-Ho;Kim, Young-Gyu;Kim, Soo-Bok
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.502-509
    • /
    • 2010
  • In this study, the (phosphorous removal) the characteristics of phosphorous removal due to (the iron compound precipitated) iron compound precipitation by iron electrolysis in (the anoxic. oxic process) anoxic and oxic processes (equipped with the) in an iron precipitation device were analyzed. During the device operation period, the average concentration of BOD, T-N, and T-P were 219.9 mg/l, 54.6 mg/l and 6.71 mg/l, respectively. The BOD/$COD_{Cr}$ ratio was 0.74, and the BOD/T-N and BOD/T-P ratios were 4.0 and 32.8, respectively. The removal rate of (the organic matters) organic matter (BOD and $COD_{Cr}$) was very high at 91.6% or higher, and that of nitrogen was 80.5%. The phosphorous concentration (of the final) in the treated water was 0.43 mg/l (0.05-0.74 mg/l) on average, and the removal efficiency was high at 90.8%. The soluble T-P concentrations in (an) the anoxic reactor, oxic reactor (II) and final treated water were 1.99 mg/l, 0.79 mg/l and 0.43 mg/l, respectively, which indicated that the phosphorous concentration in the treated water was very low. Regardless of the changes in the concentrations of (organic matters) organic matter, nitrogen and phosphorous in the influent, the quality of the treated water was relatively stable and high. The removal rate of T-P somewhat increased with the increase in the F/M ratio in the influent, and it also linearly increased in proportion to the T-P loading rate in the influent. In the treatment process used in this study, phosphorous was removed (using) by the precipitated iron oxide. Therefore, the consumption of organic (matters) matter for biological phosphorus removal was minimized and (most of the organic matters were) was mostly used as the organic carbon source for the denitrification in the anoxic reactor. This (can be an economic) treatment process (without the need for the supply of additional organic matters) is economic and does not require the supply of additional organic matter.