• Title/Summary/Keyword: iron corrosion

Search Result 352, Processing Time 0.022 seconds

Conservation of stapled books: Rebinding using colored iron cores (철제 스테이플이 박힌 책의 보존처리)

  • Ha, Hyojin;Choi, Jungeun
    • Journal of Conservation Science
    • /
    • v.30 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • The sample book was printed in 1935. Since the books in the early twentieth century were printed using acidic paper, the color of the paper would change to brown over time due to iron corrosion. In addition to corroding iron cores, the acidity of the paper (pH 3.2) also made the paper brown and fragile, as was true in the case of the sample book. To clean the paper of the sample book and to make it strong, we replaced the iron core and performed wet cleaning on the paper to remove contaminants. Then we pressed the sample book dry, and subsequently linening every page with Minoshi($4g/m^2$). Generally, book conservator rebinding the book using wires or threads: however we have devised a new method to rebind the book using colored iron cores. To color the iron core brown, they were dipped in an aqueous coloring solution ($H_2O$, $C_2H_5OH$, $CuSO_4{\cdot}5H_2O$, $FeCl_3{\cdot}6H_2O$); subsequently, a 20% paraloid B-72 was applied to protect the colored iron cores from corrosion.

Application Study of $CO_2$ Snow Cleaning for Cleaning of Foreign Matter and Corrosion Products on Iron Artifacts ($CO_2$ Snow Cleaning 적용 철제유물 표면 이물질 제거 연구)

  • Lee, Eun-Ji;Cho, Nam-Chul;Lee, Jong-Myong;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.27 no.3
    • /
    • pp.333-344
    • /
    • 2011
  • Cleaning of foreign matter and corrosion products on surface among conservation treatment of iron artifacts is an important part for looking up a original form. The sand blaster is the most popular equipment when it removes the foreign matter and corrosion products on iron artifacts surface. Current foreign matter and corrosion products equipment, which mostly uses, is sand blaster. Glass dust which sprayed from sand blaster is harmful and causing environmental pollution. In order to solve these problems, we investigated the $CO_2$ snow cleaning that use a eco-friendly equipment to apply for cleaning foreign matter and corrosion products on surface of iron artifacts. It examined by using sand blaster and $CO_2$ snow cleaning to aged steel coupon and iron artifacts. In case of aged steel coupon, the result showed that the sand blaster and $CO_2$ snow cleaning methods were similar to the degrees of cleaning foreign matter and corrosion products, through surface roughness, color measurement and SEM. $CO_2$ snow cleaning applied to aged steel coupons weren't worn out the surface in comparison with sand blaster by SEM. When applied to the iron artifacts, power nozzle of the $CO_2$ snow cleaning was an excellent cleaning effect that surface wern't worn out in comparison with sand blaster. And, it showed that internal structure change of metal was no found before and after cleaning by X-ray radiography. Consequently, we confirmed that cleaning of the sand blaster and power nozzle of $CO_2$ snow cleaning were similar to the effect. But, it's very careful to use this method because of high outlet pressure of power nozzle for applying to the iron artifacts. As a result of experiments, it could be found that the cleaning methods should be selected depending on internal state of the artifacts.

In Situ Observation of Initial Rusting Process of Steel Containing Al Using Synchrotron Radiation X-Rays

  • Morimoto, J.;Yamashita, M.;Uchida, H.;Doi, T.;Kamimura, T.;Miyuki, H.;Konishi, H.;Mizuki, J.
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • We observed initial rusting process of steel containing Al under wet/dry cyclic condition with NaCl solution film using in situ X-ray diffraction spectroscopy at SPring-8 synchrotron radiation facility. It was found that mass fraction of iron oxides such as ${\alpha}-FeOOH$, ${\beta}-FeOOH$ and ${\gamma}-FeOOH$ varied with Al content. Some kinds of Al oxides were also found at the initial stage of corrosion. Those corrosion products might affect the corrosion process and corrosion rate of the steel.

Corrosion Prevention of Cr steels in $SO_2$ Atmosphere for Electrial Power Plants (화력발전소의 장수명화를 위한 Cr 강(鋼)의 고온 $SO_2$가스 부식저감 대책 기술)

  • Lee, Dong-Bok;Choe, Jeong-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.114-115
    • /
    • 2007
  • The corrosion characteristics of Cr steels were investigated to protect Cr steels from the SO2-gas corrosion in the coal-fired power plant. The samples tested were low alloy ferritic steel (ASTM T22, 23), martensitic steel (ASTM T91, 92, 122), and austenitic stainless steel (ASTM 347HFG). The corrosion tests were performed between 600oC and 1000oC in Ar + (0.2, 1)%SO2 gas for 100 hr. Chromium was quite beneficial to corrosion resistance, while iron was not. The corrosion resistance increased in the order of T22, T23, T91, T92, T122, and 347HFG.

  • PDF

An Experimental Study of Corrosion Characteristics and Compounds by Corrosion Factors in Iron Artifacts (철제유물 부식인자에 대한 부식양상 및 부식화합물 실험 연구)

  • Park, Hyung Ho;Lee, Jae Sung;Yu, Jae Eun
    • 보존과학연구
    • /
    • s.33
    • /
    • pp.33-43
    • /
    • 2012
  • The corrosion phenomena of the iron artifacts was studied by morphology observation and instrumental analysis(EDS, XRD, Raman) with various corrosion factors in oder to verify to confirm the danger of corrosion factors. Corrosion compounds were collected by depositing pure Fe powder(99%) into a HCl, $HNO_3$, $H_2SO_4$, and $H_2O$ solution which contained the corrosion factors. Stereoscopic-microscope observations were then conducted determine the colors and shapes of the collected corrosion compounds, and SEM-EDS analysis was conducted to confirm the corrosion factors and the growth of these compounds. X-ray diffraction (XRD), Raman analyses were conducted to examine the crystal structure and compositions of the created corrosion compounds. The results of the experiment revealed that corrosion speed was faster in an acidic environment and corrosion of HCl and $H_2SO_4$ was greater than that of $HNO_3$. The corrosion compounds of HCl grew into a needle or chestnut-like shape after being affected by Cl- ion, and XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $H_2SO_4$ was affected by S ion and grew into a slender-needle-like or cylindrical shape, and the XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $HNO_3$ grew into a spherical or plate-like shape after being affected by O ion and the XRD and Raman analyses detected magnetite and lepidocrocite. Although the corrosion compounds of $H_2O$ grew into a spherical or plate-like shape after being affected by O ion, most of them were observed to have had spherical shapes, and the XRD and Raman analyses failed to detect corrosion compounds in them. It was found in the study that corrosion characteristics and compounds are diversely displayed according to the corrosion factor.

  • PDF

A Study on the Oxidation Resistance of Aluminum Cast Iron by Aluminum Content (알루미늄 함량에 따른 알루미늄 주철의 내산화성에 관한 연구)

  • Kim, Dong-Hyuk
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.135-145
    • /
    • 2020
  • Aluminum cast iron has excellent oxidation resistance, sulfurization resistance, and corrosion resistance. However, the ductility at room temperature is insufficient, and at temperatures above 600?, the strength drops sharply and practicality is limited. In the case of heat-resistant cast iron, high-temperature materials containing Cr and Ni account for 30 to 50% or more. However, these high-temperature materials are expensive. Aluminum heat-resistant cast iron is considered as a substitute for expensive heat-resistant materials. Oxidation due to the aging temperature and holding time conditions increases more in 0 wt.% Al-cast iron than in 2 and 4 wt.% Al-cast iron according to oxidized weight and gravimetric oxide layer thickness measurements. As a result of observing the cross-section of the oxide layer, it was found to contain 0 wt.% of Al-cast iron silicon oxide-containing SiO2 or Fe2SiO4 oxide film. In cast iron containing aluminum, the thickness of the internal oxide layer due to aluminum increases as the aging temperature and retention time increase, and the amount of the iron oxide layer generated on the surface decreases.