• Title/Summary/Keyword: irgarol 1051

Search Result 5, Processing Time 0.022 seconds

Distribution of Antifouling Agent Using Headspace Solid Phase Microextraction(HS-SPME) Method in Southwestern Coast of Korea (HS-SPME법을 이용한 한국 서남해 연안 해역에서의 방오제 분포 특성)

  • Han, Sang-Kuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.85-93
    • /
    • 2012
  • We study on the distribution characteristics of antifouling agents such as Sea-nine 211, Irgarol 1051, Diuron using HS-SPME method in southwestern coast of Korea. Short half-life of Sea-nine 211 was distributed in very low concentrations and/or below detection limits in all of the sampling points, both water and sediments samples. Irgarol 1051 was detected to have the highest concentration respectively $6.98{\mu}g/L$, 28.50 ng/g-dry wt in the seawater and sediments, and regional distribution characteristics did not appeared. Strong bioaccumulation and long half-life of Diuron was distributed higher concentration than in all sampling point and was analyzed to have the highest concentration(3882.22 ng/g-dry wt) Mo7(Mokpo)'s sediment. Irgarol 1051 and Diuron distributed in the shipbuilding industry and ship marina are located just at the point to found in high concentrations. In addition, the distribution of the antifouling agent materials were lower in concentration than in inner bay to outter bay in sediments. Antifouling agent materials from these results were contaminated high potential from port and shipbuilding industry located in inner bay.

Analysis of Butyltin Compounds and New Antifouling Agents in the Southwestern Korean Tidal flats (한국연안의 갯벌 중에 유기주석화합물 및 새로운 방오도료제의 분석)

  • Lee, Seong-Eon;You, Jae-Bum;Park, Jae-Hong;Lee, Yong-Woo;Won, Ho-Shik;Lee, Dong-Sup
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The prohibition of usage of tributyltin (TBT) compounds and the legal usage of new antifouling agents have changed the Korean costal environments in recent. 39 sampling sites of southwestern tidal flats were chosen in order to investigate the concentration of antifouling agents, and results in 2006 were compared with previous results in 1998. The concentrations of TBT compounds in most of sites except Incheon (It1) have been drastically decreased. Interestingly, In Jebudo (Jt2), Mokpo(MOt4) and Suncheon(SUt3) sites were detected as below the limit of detection and it is because of the legal restriction of TBT compounds. However, in most of the sampling sites in Korea, new antifouling agents, viz. Irgarol 1051, Dichlofluanid and Chlorothalonil, were detected. In particular, Irgarol 1051 was detected with high concentrations. In Jebudo (Jt4), a high concentration of Irgarol 1051 of 159.45 ng $g^{-1}$(dry wt) was detected. We were able to observe that the concentration of TBT compounds are has gradually been reduced whereas the new major antifouling agents are easily detected in most Korean tidal flats.

  • PDF

Simultaneous Analysis of Alternative Antifouling Agents (Diuron and Irgarol 1051) and Triazine Herbicide (Prometryn) in Seawater Using LC/MS-MS (해수 중 신방오도료(Diuron and Irgarol 1051) 및 트리아진계 제초제 (Prometryn)에 대한 LC-MS/MS 동시 분석법 정립)

  • Mikyoung Lee;Sunggyu Lee;Minkyu Choi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.4
    • /
    • pp.327-335
    • /
    • 2024
  • A simultaneous analytical method was developed to quantify antifouling agents and triazine herbicides in seawater using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The target compounds included diuron, irgarol 1051, and prometryn, which are prevalent in marine environments owing to their extensive use in antifouling coatings and agriculture. The analytical procedure involves solid-phase extraction (SPE) using HLB cartridges followed by LC-MS/MS analysis for precise quantification. The method exhibits high recovery rates for diuron (101% ± 1.25), irgarol 1051 (94.7% ± 2.08), and prometryn (93.7% ± 3.06). Seawater samples from 30 coastal sites in Korea were analyzed. Irgarol 1051 was not detected, whereas diuron was consistently detected across all sites, with concentrations from 0.68 to 11.3 ng/L, and prometryn was present at levels between 0.12 and 7.06 ng/L. The highest diuron and prometryn concentrations were recorded along the southeastern and western coasts, respectively. These findings underscore the critical need for continuous monitoring and regulations to manage these contaminants in marine ecosystems, thereby safeguarding ecological integrity and public health. This study establishes a robust analytical framework for the comprehensive assessment of multiple marine contaminants.

Effects of Anti-Fouling System(AFS) on embryos of a sea urchin, Mesocentrotus nudus (국내 주상용 Anti-Fouling System 처리 활성물질이 둥근성게(Mesocentrotus nudus)의 배아에 미치는 영향)

  • Seo, Jin-Young;Kang, Jung Hoon;Choi, Jin-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.389-395
    • /
    • 2019
  • In this study, we aimed to assess the toxicity of biocide present in antifouling paint on embryos of sea urchin, Mesocentrotus nudus. Three types of biocide (Sea-nine 211, Diuron, and Irgarol 1051) were selected for the exposure experiment. The EC50 of Sea-nine, Diuron, and Irgarol on the fertilization rate of sea urchin were 32.8 ㎍ L-1, 7,975 ㎍ L-1 and 6,995 ㎍ L-1, respectively. The EC50 of Sea-nine, Diuron, and Irgarol on the development rate of sea urchin were 31.6 ㎍ L-1, 3,044 ㎍ L-1, and 2,267 ㎍ L-1, respectively. The highest toxicity was observed in the presence of Sea-nine.

Determination of new antifouling agents in seacoasts in Korea by gas chromatography-mass spectrometry (GC/MS를 이용한 한국연안의 새로운 방오제 분석)

  • Lee, Seongeon;Won, Hoshik;Lee, Dongsup
    • Analytical Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.459-473
    • /
    • 2008
  • Antifouling agents including tributyltin (TBT) compound and its derivatives have been used for many years, but the usage of TBT in Korea was legally restricted in 2003, due to its significant environmental impact. Following this, many new alternative antifouling agents have been used. In this experiment, four major antifouling agents were selectively analyzed to study their release in seawater and tidal flats on the Korean Peninsula. These new antifouling agents were extracted from the seawater and tidal flats using a liquid-liquid extraction method and microwave extraction, respectively. The measured concentrations of Irgarol 1051, Sea-Nine 211, Dichlofluanid and Chlorothalonil ranged from N.D.$-23.80ng/{\ell}$, N.D.$-15.30ng/{\ell}$, N.D.$-61.69ng/{\ell}$ and N.D.$-4.19ng/{\ell}$ in the seawater samples and from N.D.-159.45 ng/g, N.D.-476.57 ng/g, N.D.-59.79 ng/g and N.D.-21.27 ng/g in the tidal flat samples, respectively. Interestingly, these new antifouling agents were not detected in any area in the tidal flats at Pusan, whereas a certain amount of them was found in the seawater.