• Title/Summary/Keyword: ionospheric delay scale factor

Search Result 2, Processing Time 0.014 seconds

Determination of Ionospheric Delay Scale Factor for Low Earth Orbit using the International Reference Ionosphere Model (IRI 모델을 이용한 저궤도 전리층 지연값 배율 결정)

  • Kim, Jeongrae;Kim, Mingyu
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.331-339
    • /
    • 2014
  • Determination of an ionospheric delay scale factor, which converts ground-based ionospheric delay into low Earth orbit ionospheric delay, using the international reference ionosphere model is proposed. Ionospheric delay from international GNSS service model combined with IRI-derived scale factor is evaluated with NASA GRACE satellite data. At approximately 480km altitude, mean and standard deviation of the scale factor are 0.25 and 0.01 in 2004. The scale factor reaches high in night time and Spring and Fall seasons. Ionospheric delay error by the proposed method has a mean of 3.50 TECU in 2004.

The Real-Time Determination of Ionospheric Delay Scale Factor for Low Earth Orbiting Satellites by using NeQuick G Model (NeQuick G 모델을 이용한 저궤도위성 전리층 지연의 실시간 변환 계수 결정)

  • Kim, Mingyu;Myung, Jaewook;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • For ionospheric correction of low earth orbiter (LEO) satellites using single frequency global navigation satellite system (GNSS) receiver, ionospheric scale factor should be applied to the ground-based ionosphere model. The ionospheric scale factor can be calculated by using a NeQuick model, which provides a three-dimensional ionospheric distribution. In this study, the ionospheric scale factor is calculated by using NeQuick G model during 2015, and it is compared with the scale factor computed from the combination of LEO satellite measurements and international GNSS service (IGS) global ionosphere map (GIM). The accuracy of the ionospheric delay calculated by the NeQuick G model and IGS GIM with NeQuick G scale factor is analyzed. In addition, ionospheric delay errors calculated by the NeQuick G model and IGS GIM with the NeQuick G scale factor are compared. The ionospheric delay error variations along to latitude and solar activity are also analyzed. The mean ionospheric scale factor from the NeQuick G model is 0.269 in 2015. The ionospheric delay error of IGS GIM with NeQuick G scale factor is 23.7% less than that of NeQuick G model.