• Title/Summary/Keyword: ionic salt strength

Search Result 48, Processing Time 0.023 seconds

Effect of ionic Salt Strength on the Growth and Photosynthetic Rate of Pepper Plug Seedlings (무기 이온의 농도가 고추 플러그묘의 생육과 광합성에 미치는 영향)

  • Ahn, Chong-Kil;Son, Beung-Gu;Kang, Jum-Soon;Lee, Yong-Jae;Park, In-Soo;Choi, Young-Whan
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.68-71
    • /
    • 2003
  • Experiments were conducted to investigate optimal ionic salt strength in nutrient solution for small plug seedlings of ‘Nokgwang’ and ‘Kwari’ green pepper. Plant height increased with increasing ionic salt strength. total leaf area was 72% greater in ‘Nokgwang’ and 18% greater in ‘Kwari’with 2.0 ionic salt strength than that with 1.0 strength. Dry weight per plant tended to increase at higher ionic salt strengths in ‘Kwari’, but to decrease in ‘Nokgwang’ Chlorophyll content increased with increasing ionic salt strength in both cultivars. Photosynthetic rate, stomatal conductance, and transpiration rate were higher for plants fertilized with 1.5 strength than other strengths in both cultivars. Photosynthetic rate peaked at 8.74 $\mu$mol$.$m$^{-2}$ s$^{-1}$ in ‘Nokgwang’ and 5.70 $\mu$mol$.$m$^{-2}$ s$^{-1}$ in‘Kwari’with 1.5 ionic salt strength.

Effects of Ionic strength and Anion species on Heavy Metal Adsorption by Zeolite (Ionic Strength 및 공존(共存) 음(陰)Ion이 Zeolite에 의(依)한 중금속(重金屬)의 흡착(吸着)에 미치는 영향(影響))

  • Lee, Jyung-Jae;Park, Byoung-Yoon;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 1988
  • It is important to assess the effects of ionic strength and type of anions when studying the adsorption of heavy metals on zeolite because the background salt may complex with heavy metals and compete for adsorption sites. This experiment was carried out to determine the effect of ionic strength and anion species($Cl^-$, $SO^{2-}\;_4$, and $ClO^-\;_4$) on heavy metal adsorption. Heavy metal adsorption by zeolite from solutions in the range of 10 to 50ppm was studied in the presence of NaCl, $Na_2SO_4$ and $NaClO_4$, with different concentrations. The ionic strength ranged from 0.01 to 1.00. Adsorption of heavy metal cations could be described by the Freundlich isotherm equation. Increasing the ionic strength of equilibrium solutions, the amounts of heavy metal adsorbed on the zeolite surfaces decreased in all three of the anion systems. This fact could be attributed to the competition of background salt cation and the decrease in initial activity of heavy metal cations. In the presence of Cl anion, less adsorption resulted than in the presence of $SO_4$ or $ClO_4$ anions of the same ionic strength, indicating the presence of uncharged and negatively charged complexes of heavy metal with Cl ligands.

  • PDF

Solubility of a Salt Dissolved in Water in the Presence of Another Salt (두 가지 염이 동시에 물에 녹을 때의 용해도)

  • Park, Jong-Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.4
    • /
    • pp.453-465
    • /
    • 2009
  • In this study, the descriptions of salt solubility in the textbooks of secondary school and college were reviewed to figure out the reason of low understanding of elementary and secondary school students and teachers about the solubility of a salt in the presence of other ions. The ionic strength dependence of salt solubility was not introduced in the secondary school textbooks and general chemistry textbooks. It appeared in the physical chemistry textbooks as a direct or an indirect explanation. However, most of college senior students who had learned the physical chemistry could not relate the salt solubility with the ionic strength change. The factors might affect salt solubility, such as the ion pair formation and the activity coefficient change by ionic strength, were mentioned and an experimental result was also shown to resolve the questions that college students and teachers might have. Because these explanations are beyond the secondary school level, we need to develope an easier and better explanation suitable for the secondary school students.

Effect of Salt on Crystal Growth of Plate-like Alumina Particles by Molten-salt Method (Molten-salt 방법에 의해 합성되는 판상형 알루미나 분말의 입성장 거동에 미치는 Salt의 영향)

  • Kim, Bo Yeon;Lee, Yoon Joo;Shin, Dong-geun;Kim, Soo Ryong;Kwon, Woo Teck;Kim, Younghee;Choi, Duck Kyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.603-608
    • /
    • 2015
  • Alumina powder have been expanded its application in industry and required to control its morphology such as powder size and aspect ratio of single particle. It can be synthesized by molten - salt method which is possible to obtain various shapes of ceramic particles by controlling the growth direction because each crystal face has different growth rate. In this study, various combinations of salts such as NaCl, $Na_2SO_4$, $Na_3PO_4$ and their mixture were used for control the growth of plate like alumina particle from the initial stage of synthesis because salt having different ionic strength can control the growth direction of ceramic particle under its melting condition around $800{\sim}900^{\circ}C$, and growth behavior of plate-like alumina particle with different reaction conditions such as temperature and concentration on the crystal size and shape was studied.

FT-Raman Studies on Ionic Interactions in ${\pi}$-Complexes of Poly(hexamethylenevinylene) with Silver Salts

  • Kim Jong-Hak;Min Byoung-Ryul;Won Jong-Ok;Kang Yong-Soo
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.199-204
    • /
    • 2006
  • Remarkably high and stable separation performance for olefin/paraffin mixtures was previously reported by facilitated olefin transport through ${\pi}$-complex membranes consisting of silver ions dissolved in poly(hexamethylenevinylene) (PHMV). In this study, the ${\pi}$-complex formation of $AgBF_4,\;AgClO_4\;and\;AgCF_{3}SO_3$ with PHMV and their ionic interactions were investigated. FT-Raman spectroscopy showed that the C=C stretching bands of PHMV shifted to a lower frequency upon incorporation of silver salt, but the degree of peak shift depended on the counter-anions of salt due to different complexation strengths. The symmetric stretching modes of anions indicated the presence of only free ions up to [C=C]:[Ag]=1:1, demonstrating the unusually high solubility of silver salt in PHMV. Above the solubility limit, the ion pairs and higher-order ionic aggregates started to form. The coordination number of silver ion for C=C of PHMV was in the order $AgBF_4$ > $AgClO_4$ > $AgCF_{3}SO_3$, but became similar at [C=C]:[Ag]=1:1. The different coordination number was interpreted in terms of the different transient crosslinks of silver cations in the complex, which may be related to both the interaction strength of the polymer/silver ion and the bulkiness of the counteranion.

Ionic Strength Dependent Binding Mode of 9-Aminoacridine to DNA

  • 김혜경;조태섭;Kim, Seog K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.358-362
    • /
    • 1996
  • The ionic strength dependent binding mode of 9-aminoacridine (9AA), a well-known DNA intercalator, to DNA is studied by flow linear dichroism, circular dichroism, fluorescence techniques and equilibrium dialysis. The DNA-bound 9AA exhibits spectral properties corresponding to the intercalative binding mode disregarding the salt concentrations; the angle between the long-axis transition moment of the 9AA molecule and DNA helix axis is calculated to be about 65°, indicating a significant deviation from the classical intercalation. At low salt concentrations, however, upwards bending curve in Stern-Volmer plot is observed (where 9AA is a fluorophore and DNA a quencher), indicating the coexistence of both static and dynamic quenching mechanisms or the existence of an additional binding site.

Separation of Low Molecular Weight of Dye from Aqueous Solution Using the Prepared Nano-composite Hollow Fiber Membranes (중공사형 나노복합막 제조를 이용한 수용액으로부터 저분자량의 염료 분리 연구)

  • Park, Cheol Oh;Lee, Sung Jae;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.180-186
    • /
    • 2018
  • The nano-composite membranes were prepared onto the polyvinylidene fluoride (PVDF) hollow fiber membranes through twice dip-coating known layer-by-layer method. For the first coating, poly(vinylsulfonic acid, sodium salt)(PVSA) and Poly(styrene sulfonic acid)(PSSA) were used with varying the concentration and ionic strength (IS) and the poly(ethyleneimine)(PEI) as the second coating material was fixed at 10,000 ppm and IS = 0.3. To characterize the prepared nano-composite membranes, the permeabilities and rejection ratio were measured for each 100 ppm NaCl, $CaSO_4$, $MgCl_2$, and 25 ppm MO aqueous solution. The rejections were increased as the concentrations of coating materials increased. And it was confirmed that the salt rejections for PSSA as the coating material were higher than for PVSA. Typically, the permeability, 1.848 LMH and the rejection for MO 76.3% were obtained at the coating conditions of PSSA 30,000 ppm and I.S = 1.0.

Binding of Methylene Blue to two types of water soluble polymer and its removal by polyelectrolyte enhanced ultrafiltration

  • Mansour, Nadia Cheickh;Ouni, Hedia;Hafiane, Amor
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • The interactions of water soluble polymers with dye are studied by ultrafiltration using a molecular weight cut off of 10 KDa regenerated cellulose ultrafiltration membrane. Two water-soluble polymers, namely Poly (Sodium-4 Styrenesulfonate) (PSS) and Poly (Vinyl Alcohol) (PVA) were selected for this study. The effects of process parameters, such as, polyelectrolyte concentrations, transmembrane pressure, ionic strength and pH of solution on dye retention and permeation flux were examined. PSS enhanced ultrafiltration achieved dye retention as high as 99% as a result of complexation between polyanion containing aromatic groups and cationic dye. This result was confirmed by the red shift. The retention of dye decreases as the salt concentration increases, a high retention was obtained at pH above 4. However, in case of PVA, relatively low retention (50%) was observed. Ionic strength and pH has no significant effect on the removal of MB. The permeate flux depended slightly on polyelectrolytes concentrations, transmembrane pressure, salt concentration and pH.

Permeation Property of Ionomer Film with New Multifunctional Ionic Site (다관능기를 도입한 아이오노머 필름의 기체투과 특성)

  • Lee, Bo-Mi;Jeong, Sam-Bong;Nam, Sang-Yong
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.227-236
    • /
    • 2012
  • Ionomer is a thermoplastic that is composed of covalent bonds and ionic bonds. It is possible to use this material in processes such as injection molding or extrusion molding due to the material's high oil resistance, weatherproof characteristics, and shock resistance. In this study, a new ionomer having a multifunctional group was prepared by a stepwise neutralization system with the addition of acidic and salt additives. In step I, to increase the contents of the multifunctional group and the acid degree in ethylene acrylic acid (EAA), MGA was added to the ionomer resin (EAA). A new ionomer was prepared via the traditional preparation method of the ionic cross-linking process. In step II, metal salt was added to the mixture of EAA and MGA. The extrusion process was performed using a twin extruder (L/D = 40, size : ${\varphi}30$). Ionomer film was prepared for evaluation of gas permeability by using the compression molding process. The degree of neutralized and ionic cross-linked new ionomer was confirmed by FT-IR and XRD analysis. In order to estimate the neutralization of the new ionomer film, various properties such as gas permeation and mechanical properties were measured. The physical strength and anti-scratch property of the new ionomer were improved with increase of the neutralization degree. The gas barrier property of the new ionomer was improved through the introduction of an ionic site. Also, the ionic degree of cross-linking and gas barrier property of the ionomer membrane prepared by stepwise neutralization were increased.

Modified Carrageenan. 6. Crosslinked Graft Copolymer of Methacrylic Acid and kappa-Carrageenan as a Novel Superabsorbent Hydrogel with Low Salt- and High pH-Sensitivity

  • Pourjavadi A.;Harzandi A. M.;Hosseinzadeh H.
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.483-490
    • /
    • 2005
  • A novel, polysaccharide-based, superabsorbent hydrogel was synthesized through crosslinking graft copolymerization of methacrylic acid (MAA) onto kappa-carrageenan ($_{k}C$), using ammonium persulfate (APS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. A proposed mechanism for $_{k}C$­g-polymethacrylic acid ($_{k}C$-g-PMAA) formation was suggested and the hydrogel structure was confirmed using FTIR spectroscopy. The effect of grafting variables, including MBA, MAA, and APS concentration, was systematically optimized to achieve a hydrogel with the maximum possible swelling capacity. The swelling kinetics in distilled water and various salt solutions were preliminarily investigated. Absorbency in aqueous salt solutions of lithium chloride, sodium chloride, potassium chloride, calcium chloride, and aluminum chloride indicated that the swelling capacity decreased with increased ionic strength of the swelling medium. This behavior can be attributed to the charge screening effect for monovalent cations, as well as ionic crosslinking for multivalent cations. The swelling of super absorbing hydrogels was measured in solutions with pH ranging from 1 to 13. In addition, the pH reversibility and on-off switching behavior, at pH levels of 3.0 and 8.0, give the synthesized hydrogels great potential as an excellent candidate for the controlled delivery of bioactive agents.