• Title/Summary/Keyword: ionic groups

Search Result 165, Processing Time 0.026 seconds

The Electroresponse Properties of Alginate Films under the Electric Field (알지네이트 필름의 전기장 하에서의 응답 특성)

  • 김인중;강휘원;정창남
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.195-200
    • /
    • 2003
  • Alginate is a natural ionic polymer including numerous anionic groups and can be actuated by the ionic group under the electric field. The crosslinked alginate films were fabricated with CaCl$_2$. The thermal, mechanical and electroresponse properties of the films were investigated by thermogravimetric analysis, tensile and bending tests. The initial degradation and tensile strength increased according to the degree of crosslinking. Also, the swelling ratio of the films increased with decreasing degree of crosslinking and increasing pH due to free volume and electrostatic repulsion. The films actuated by an electric stimulus exhibited gentle and flexible action like a pendulum. In the electric field, the electric stimuli such as the applied voltage, ionic strength and kind of electrolyte solution had an effect on the electroresponse of the films. Alginate films with 5 wt% crosslinking agent showed the highest bending angle and reversible bending behavior. When the ionic strength of NaCl and KCl electrolyte solution was 0.1 M, the films showed the highest electroresponse. The bending behavior of the films increased with the applied voltage.

Dynamic Mechanical and Morphological Studies of Styrene-co-Methacrylate and Sulfonated Polystyrene Ionomers Containing Aliphatic Dicarboxylate Salts

  • Luqman, Mohammad;Kim, Joon-Seop;Shin, Kwan-Woo
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.658-665
    • /
    • 2009
  • This study examined the effects of the sodium salts of aliphatic dicarboxylic acids (DCAs) on the dynamic mechanical properties and morphology of two sets of poly(styrene-co-sodium methacrylate) (MNa) and poly(styrene-co-sodium styrenesulfonate) (SNa) ionomers. When the DCA content was relatively low, the ionic moduli of the MNa and SNa ionomers increased but the matrix and cluster glass transition temperature ($T_g$) did not change significantly. The increasing ionic modulus was almost independent of the type of the ionic groups of the ionomer, and the chain length of DCAs. When a large amount of the sodium succinate (DCA4) was added to the MNa and SNa ionomers, the ionic moduli of the two ionomers increased strongly but the matrix and cluster $T_g's$ increased slightly and significantly, respectively. In the case of sodium hexadecanedioate (DCA 16), DCA 16 increased the ionic moduli of the two ionomers. The addition of DCA16 changed the matrix and cluster $T_g's$ of the MNa ionomer slightly, but decreased the cluster $T_g$ of the SNa ionomer significantly with no change in the matrix $T_g$. In addition, the DCA-containing ionomers showed an X-ray diffraction peak indicating the presence of ordered domains of DC As in the ionomers. Hence, DCA4 acts mainly as a reinforcing filler in MNa and SNa systems. In the case of DCA 16, it initially behaved like a filler but also functioned as a preferential plasticizer for the clusters at high content.

A Study on Natural Dyeing(2) - Dyeing of modified cotton fabric with Amur cork tree - (천연염색에 관한 연구(2) - 개질 면에 대한 황벽염색 -)

  • 김혜인;박수민
    • Textile Coloration and Finishing
    • /
    • v.13 no.3
    • /
    • pp.172-179
    • /
    • 2001
  • In order to improve dye uptime and wash fastness on dyeing of cotton fabrics with Amur cork tree, twitter ionic groups, acid groups, hydrophobic groups or cross linkage were introduced into cotton fabrics. Results obtained were as follows, 1 The optimum modification of cotton fabrics was carbosy methylation in the water solution containing 15% sodium chloroacetate and 15% sodium hydroxide and then introducing hydrophobic groups by treating in the solution containing $30m\ell$ DMSO and $3m\ell$ 2,4-TDI 2. Numbers of carbon, diisocyanate group than monoisocyanate group and aromatic compound than aliphatic compound in introduced hydrophobic groups were effective. 3. The dye uptake and wash fastness wore enhanced significantly by treating only with 2,4-TDI. 4. The wash fastness seems to correlate to the degree of swelling of the fabric during washing and also depend on the Interaction between dyes and acid groups as well as hydrophobic groups.

  • PDF

A Series of N-Alkylimidazolium Propylhexanamide Iodide for Dye-Sensitized Solar Cells

  • Lim, Sung-Su;Sarker, Subrata;Yoon, Sun-Young;Nath, Narayan Chandra Deb;Kim, Young-Jun;Jeon, Heung-Bae;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1480-1484
    • /
    • 2012
  • We report a series of novel imidazolium iodides based ionic liquids (NMIPHI, NAIPHI, and NBIPHI) with different functional groups for the development of a quasi-solid type electrolyte for dye-sensitized solar cells (DSSCs). The diffusion coefficients of redox ions ($I^-$ and $I_3{^-}$) are dependent on the molecular weight and it was higher for lighter salts. Among the three ionic liquids, NMIPHI showed highest efficiency of 4.18% when it was used in a liquid electrolyte of a DSSC with $ca$. 6 ${\mu}m$ thick $TiO_2$ mesoporous film. Even though the efficiency was $ca$. 19% lower than that obtained from a liquid electrolyte composed of PMII. When NMIPHI was mixed with PMII with a molar ratio of 1:1 in a solvent free electrolyte, the efficiency of the DSSCs was enhanced compared to that based on pristine PMII.

Reusable and Efficient Polystryrene-supported Acidic Ionic Liquid Catalyst for Mononitration of Aromatic Compounds

  • Li, Li Xia;Ling, Qi Long;Liu, Zu Liang;Xing, Xiao Dong;Zhu, Xiao Qin;Meng, Xiao
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3373-3377
    • /
    • 2012
  • A series of polystyrene-supported 1-(propyl-3-sulfonate)-3-methyl-imidazolium hydrosulfate acidic ionic liquid (PS-$[SO_3H-PMIM][HSO_4]$) catalysts were prepared and tested for mononitration of simple aromatics compounds with nitric acid. It was found that the reactivity of the catalysts increased with increasing $[SO_3H-PMIM][HSO_4]$ content. The para-selectivity was not only related to the $[SO_3H-PMIM][HSO_4]$ content but also the substituent groups in aromatics. A reaction mechanism of nitration over this new catalyst was proposed. The catalytic activity of this catalyst decreased slightly after fifth runs in the synthesis of nitrotoluene.

Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler

  • ElBellihi, Abdelhameed Ahmed;Bayoumy, Wafaa Abdallah;Masoud, Emad Mohamed;Mousa, Mahmoud Ahmed
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2949-2954
    • /
    • 2012
  • Nano ZnO with an average size of 8 nm was prepared by thermal decomposition of zinc oxalate at $450^{\circ}C$. A series of based composite polymer electrolyte PEO-$LiClO_4$ and nano ZnO as a filler have been synthesized using solution cast technique, with varying the filler ratio systematically. XRD, DSC and FTIR studies have been conducted to investigate the structure and interaction of different groups in the composite polymer electrolyte. Effect of nano ZnO ceramic filler concentration on the structure of composites and their electrical properties (DC-conductivity, AC-conductivity, dielectric constant, dielectric loss and impedance) at different frequencies and temperatures was studied. Melting temperature ($T_m$) of PEO decreased with the addition of both $LiClO_4$ salt and nano ZnO filler due to increasing the amorphous state of polymer. All composite samples showed an ionic conductivity. The maximum room temperature ionic conductivity is found for $(ZnO)_{0.5}(PEO)_{12}(LiClO_4)$ composite sample. All the results are correlated and discussed.

Chloride diffusion in concrete associated with single, dual and multi cation types

  • Song, Zijian;Jiang, Linhua;Zhang, Ziming
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2016
  • Currently, most of the investigations on chloride diffusion were based on the experiments and simulations concerning single cation type chlorides. Chloride diffusion associated with dual or multi cation types was rarely studied. In this paper, several groups of diffusion experiments are conducted using chloride solutions containing single, dual and multi cation types. A multi-ionic model is also proposed to simulate the chloride diffusion behavior in the experimental tests. The MATLAB software is used to numerically solve the nonlinear PDEs in the multi-ionic model. The experimental and simulated results show that the chloride diffusion behavior associated with different cation types is significantly different. When the single cation type chlorides are adopted, it is found that the bound rates of chloride ions combined with divalent cations are greater than those combined with monovalent cations. When the dual/multi cation type chlorides are adopted, the chloride bound rates increase with the $Ca^{2+}/Mg^{2+}$ percentage in the source solutions. This evidence indicates that the divalent cations would markedly enhance the chloride binding capacity and reduce the chloride diffusivity. Moreover, on the basis of the analysis, it is also found that the complicated cation types in source solutions are beneficial to reducing the chloride diffusivity.

Synthesis, and Structural and Thermal Characterizations of Tetrasulfonated Poly(arylene biphenylsulfone ether) Copolymer Ion Conducting Electrolytes

  • Yoo, Dong-Jin;Hyun, Seung-Hak;Kim, Ae-Rhan;Kumar, G. Gnana;Nahm, Kee-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.4041-4048
    • /
    • 2011
  • High molecular weight tetrasulfonated poly(arylene biphenylsulfone ether) (TsPBPSEH) copolymers containing up to four pendant sulfonate groups per repeat unit were synthesized via aromatic nucleophilic displacement condensation from 4,4'-bis(4-chloro-3-sulfonatophenylsulfonyl)biphenyl-2,2'-disulfonate (SBCSBPD), 4,4'-dichlorodiphenylsulfone (DCDPS) and 4,4'-(hexafluoroisopropylidene)diphenol (6F-BPA). The synthesized copolymers were structurally characterized using $^1H$ NMR and FT-IR techniques. They were analytically pure, amorphous and were readily soluble in a wide range of organic solvents. Electrolyte membranes were successfully cast using the synthesized polymers with various sulfonation levels and N-methyl-2-pyrrolidinone. This new class of polymer membranes exhibited elevated thermal and physical stabilities and reduced swelling at high temperatures. An increase of acidic functional groups in the copolymer yielded high ion exchange capacity and moderate ionic conductivity values even at higher temperatures, which makes them potential ion conducting candidates.

Investigations on ionic polymer actuators based on irradiation-crosslinked sulfonated poly(styrene-ran-ethylene)

  • Wang, Xuan-Lun;Oh, Il-Kwon;Xu, Liang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.316-317
    • /
    • 2009
  • The ion-exchange membrane, Nafion, remains as the benchmark for a majority of research and development in IPMC technology. In this research, we employed a novel ionomer named by sulfonated poly(styrene-ran-ethylene) (SPSE) that is crosslinked by UV irradiation. The sulfonic acid groups were stable during the UV irradiation crosslinking process. Water uptake, ion exchange capacity, and proton conductivity are characterized for both pure SPSE and crosslinked SPSE membrane. The bending responses of SPSE actuators under both direct current (DC) and alternating current (AC) excitations were investigated. The voltage-current behaviors of the actuators under AC excitations are also measured. Results showed the crosslinked SPSE actuators have better electromechanical performance than that of pure SPSE actuator with regard to tip displacement as a novel smart material.

  • PDF

The Behavior of Particulate-Bound logic Components and Their Relationships with Meteorological Parameters: Air-Sea Geochemistry of Inorganic and Organic tons in Cheiu Island (이온성분의 환경거동과 기상인자와의 관계: 제주지역을 중심으로 한 유.무기성 이온성분의 대기-해양지화학)

  • 김기현;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.479-490
    • /
    • 1998
  • The concentrations of ten inorganic (sodium, chloride, sulfate, ammonia, etc.) and three organic (acetate, formate, and MSA) ions associated with airborne particulate matter were measured from Cheju Island, Korea during the three field intensive campaigns conducted in (1) Sept./oct. 1997 (fall), (2) Dec. 1997 (winter), and (3) April 1998 (spring). The results of our measurements indicated that the concentration levels of most ionic species were decreasing significantly across the three experimental periods. The patterns of concentration reduction were clear as the sum of all cation and anion species changed dramatically across those periods such as 294> 144 > 65 and 193 >96>74 nequiv/m3, respectively. The changes were best explained in terms of the wind rose patterns of the study site. Since our sampling spot is located on the western-end point of Cheju Island, it is likely to reflect the effects of diverse sources such as natural, marine processes during NW and local non-maritime ones during SE winds. .Hence, the periodical changes in ionic concentrations may be accounted for by the comparable changes in wind direction. To further investigate environmental characteristics of these ionic components, correlation analysis was conducted not only between meteorological and ion data but between different ion-pairs. The results of these analyses confirm that the concentration levels of ionic species are strongly affected by wind speed and temperature and that there are certain patterns between ion species to which such effects apply. In light of the significance of the wind rose patterns in the area, we further extended these analyses into four data groups that were divided on the basis of wind direction. The results of these analyses showed that the strength of correlations between important pairs (e.g.:. between windspeed and most of major inorganic species including sodium and chloride) can be ranked on the distribution of major ions are very diverse, depending on data grouping scheme for such analysis. The results of this study thus suggest that environmental behavior of chemical components be analyzed in various respects, rather than simple standard, especially if measurements are made in complex environmental condition under which both natural and anthropogenic effects are competing each other.

  • PDF